Description: Next we establish the set-like nature of the relationship. (Contributed by Scott Fenton, 19-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | noxpord.1 | ⊢ 𝑅 = { 〈 𝑎 , 𝑏 〉 ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } | |
| noxpord.2 | ⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑅 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } | ||
| Assertion | noxpordse | ⊢ 𝑆 Se ( No × No ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | noxpord.1 | ⊢ 𝑅 = { 〈 𝑎 , 𝑏 〉 ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } | |
| 2 | noxpord.2 | ⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑅 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } | |
| 3 | 1 | lrrecse | ⊢ 𝑅 Se No | 
| 4 | 3 | a1i | ⊢ ( ⊤ → 𝑅 Se No ) | 
| 5 | 2 4 4 | sexp2 | ⊢ ( ⊤ → 𝑆 Se ( No × No ) ) | 
| 6 | 5 | mptru | ⊢ 𝑆 Se ( No × No ) |