| Step | Hyp | Ref | Expression | 
						
							| 1 |  | noxpord.1 | ⊢ 𝑅  =  { 〈 𝑎 ,  𝑏 〉  ∣  𝑎  ∈  ( (  L  ‘ 𝑏 )  ∪  (  R  ‘ 𝑏 ) ) } | 
						
							| 2 |  | noxpord.2 | ⊢ 𝑆  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  (  No   ×   No  )  ∧  𝑦  ∈  (  No   ×   No  )  ∧  ( ( ( 1st  ‘ 𝑥 ) 𝑅 ( 1st  ‘ 𝑦 )  ∨  ( 1st  ‘ 𝑥 )  =  ( 1st  ‘ 𝑦 ) )  ∧  ( ( 2nd  ‘ 𝑥 ) 𝑅 ( 2nd  ‘ 𝑦 )  ∨  ( 2nd  ‘ 𝑥 )  =  ( 2nd  ‘ 𝑦 ) )  ∧  𝑥  ≠  𝑦 ) ) } | 
						
							| 3 | 2 | xpord2pred | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  Pred ( 𝑆 ,  (  No   ×   No  ) ,  〈 𝐴 ,  𝐵 〉 )  =  ( ( ( Pred ( 𝑅 ,   No  ,  𝐴 )  ∪  { 𝐴 } )  ×  ( Pred ( 𝑅 ,   No  ,  𝐵 )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) | 
						
							| 4 | 1 | lrrecpred | ⊢ ( 𝐴  ∈   No   →  Pred ( 𝑅 ,   No  ,  𝐴 )  =  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  Pred ( 𝑅 ,   No  ,  𝐴 )  =  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) | 
						
							| 6 | 5 | uneq1d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( Pred ( 𝑅 ,   No  ,  𝐴 )  ∪  { 𝐴 } )  =  ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } ) ) | 
						
							| 7 | 1 | lrrecpred | ⊢ ( 𝐵  ∈   No   →  Pred ( 𝑅 ,   No  ,  𝐵 )  =  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  Pred ( 𝑅 ,   No  ,  𝐵 )  =  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) | 
						
							| 9 | 8 | uneq1d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( Pred ( 𝑅 ,   No  ,  𝐵 )  ∪  { 𝐵 } )  =  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) | 
						
							| 10 | 6 9 | xpeq12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ( Pred ( 𝑅 ,   No  ,  𝐴 )  ∪  { 𝐴 } )  ×  ( Pred ( 𝑅 ,   No  ,  𝐵 )  ∪  { 𝐵 } ) )  =  ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) ) ) | 
						
							| 11 | 10 | difeq1d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ( ( Pred ( 𝑅 ,   No  ,  𝐴 )  ∪  { 𝐴 } )  ×  ( Pred ( 𝑅 ,   No  ,  𝐵 )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } )  =  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) | 
						
							| 12 | 3 11 | eqtrd | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  Pred ( 𝑆 ,  (  No   ×   No  ) ,  〈 𝐴 ,  𝐵 〉 )  =  ( ( ( ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ∪  { 𝐴 } )  ×  ( ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ∪  { 𝐵 } ) )  ∖  { 〈 𝐴 ,  𝐵 〉 } ) ) |