Step |
Hyp |
Ref |
Expression |
1 |
|
noxpord.1 |
⊢ 𝑅 = { 〈 𝑎 , 𝑏 〉 ∣ 𝑎 ∈ ( ( L ‘ 𝑏 ) ∪ ( R ‘ 𝑏 ) ) } |
2 |
|
noxpord.2 |
⊢ 𝑆 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( No × No ) ∧ 𝑦 ∈ ( No × No ) ∧ ( ( ( 1st ‘ 𝑥 ) 𝑅 ( 1st ‘ 𝑦 ) ∨ ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ) ∧ ( ( 2nd ‘ 𝑥 ) 𝑅 ( 2nd ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ∧ 𝑥 ≠ 𝑦 ) ) } |
3 |
2
|
xpord2pred |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred ( 𝑆 , ( No × No ) , 〈 𝐴 , 𝐵 〉 ) = ( ( ( Pred ( 𝑅 , No , 𝐴 ) ∪ { 𝐴 } ) × ( Pred ( 𝑅 , No , 𝐵 ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) |
4 |
1
|
lrrecpred |
⊢ ( 𝐴 ∈ No → Pred ( 𝑅 , No , 𝐴 ) = ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred ( 𝑅 , No , 𝐴 ) = ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ) |
6 |
5
|
uneq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( Pred ( 𝑅 , No , 𝐴 ) ∪ { 𝐴 } ) = ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ) |
7 |
1
|
lrrecpred |
⊢ ( 𝐵 ∈ No → Pred ( 𝑅 , No , 𝐵 ) = ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred ( 𝑅 , No , 𝐵 ) = ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ) |
9 |
8
|
uneq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( Pred ( 𝑅 , No , 𝐵 ) ∪ { 𝐵 } ) = ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) |
10 |
6 9
|
xpeq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( Pred ( 𝑅 , No , 𝐴 ) ∪ { 𝐴 } ) × ( Pred ( 𝑅 , No , 𝐵 ) ∪ { 𝐵 } ) ) = ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ) |
11 |
10
|
difeq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( ( Pred ( 𝑅 , No , 𝐴 ) ∪ { 𝐴 } ) × ( Pred ( 𝑅 , No , 𝐵 ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) = ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) |
12 |
3 11
|
eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → Pred ( 𝑆 , ( No × No ) , 〈 𝐴 , 𝐵 〉 ) = ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { 〈 𝐴 , 𝐵 〉 } ) ) |