Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
2 |
|
ntrcls.d |
|- D = ( O ` B ) |
3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
4 |
1 2 3
|
ntrclsf1o |
|- ( ph -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) ) |
5 |
|
f1ofn |
|- ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> D Fn ( ~P B ^m ~P B ) ) |
6 |
4 5
|
syl |
|- ( ph -> D Fn ( ~P B ^m ~P B ) ) |
7 |
1 2 3
|
ntrclsiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
8 |
6 7
|
jca |
|- ( ph -> ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) ) |
9 |
|
fnfun |
|- ( D Fn ( ~P B ^m ~P B ) -> Fun D ) |
10 |
9
|
adantr |
|- ( ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> Fun D ) |
11 |
|
fndm |
|- ( D Fn ( ~P B ^m ~P B ) -> dom D = ( ~P B ^m ~P B ) ) |
12 |
11
|
eleq2d |
|- ( D Fn ( ~P B ^m ~P B ) -> ( I e. dom D <-> I e. ( ~P B ^m ~P B ) ) ) |
13 |
12
|
biimpar |
|- ( ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> I e. dom D ) |
14 |
10 13
|
jca |
|- ( ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> ( Fun D /\ I e. dom D ) ) |
15 |
8 14
|
syl |
|- ( ph -> ( Fun D /\ I e. dom D ) ) |
16 |
|
funbrfvb |
|- ( ( Fun D /\ I e. dom D ) -> ( ( D ` I ) = K <-> I D K ) ) |
17 |
15 16
|
syl |
|- ( ph -> ( ( D ` I ) = K <-> I D K ) ) |
18 |
3 17
|
mpbird |
|- ( ph -> ( D ` I ) = K ) |