Metamath Proof Explorer


Theorem ntrclsfv1

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
Assertion ntrclsfv1
|- ( ph -> ( D ` I ) = K )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 1 2 3 ntrclsf1o
 |-  ( ph -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) )
5 f1ofn
 |-  ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> D Fn ( ~P B ^m ~P B ) )
6 4 5 syl
 |-  ( ph -> D Fn ( ~P B ^m ~P B ) )
7 1 2 3 ntrclsiex
 |-  ( ph -> I e. ( ~P B ^m ~P B ) )
8 6 7 jca
 |-  ( ph -> ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) )
9 fnfun
 |-  ( D Fn ( ~P B ^m ~P B ) -> Fun D )
10 9 adantr
 |-  ( ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> Fun D )
11 fndm
 |-  ( D Fn ( ~P B ^m ~P B ) -> dom D = ( ~P B ^m ~P B ) )
12 11 eleq2d
 |-  ( D Fn ( ~P B ^m ~P B ) -> ( I e. dom D <-> I e. ( ~P B ^m ~P B ) ) )
13 12 biimpar
 |-  ( ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> I e. dom D )
14 10 13 jca
 |-  ( ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> ( Fun D /\ I e. dom D ) )
15 8 14 syl
 |-  ( ph -> ( Fun D /\ I e. dom D ) )
16 funbrfvb
 |-  ( ( Fun D /\ I e. dom D ) -> ( ( D ` I ) = K <-> I D K ) )
17 15 16 syl
 |-  ( ph -> ( ( D ` I ) = K <-> I D K ) )
18 3 17 mpbird
 |-  ( ph -> ( D ` I ) = K )