| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 | 1 2 3 | ntrclsf1o |  |-  ( ph -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) ) | 
						
							| 5 |  | f1ofn |  |-  ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> D Fn ( ~P B ^m ~P B ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> D Fn ( ~P B ^m ~P B ) ) | 
						
							| 7 | 1 2 3 | ntrclsiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 8 | 6 7 | jca |  |-  ( ph -> ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) ) | 
						
							| 9 |  | fnfun |  |-  ( D Fn ( ~P B ^m ~P B ) -> Fun D ) | 
						
							| 10 | 9 | adantr |  |-  ( ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> Fun D ) | 
						
							| 11 |  | fndm |  |-  ( D Fn ( ~P B ^m ~P B ) -> dom D = ( ~P B ^m ~P B ) ) | 
						
							| 12 | 11 | eleq2d |  |-  ( D Fn ( ~P B ^m ~P B ) -> ( I e. dom D <-> I e. ( ~P B ^m ~P B ) ) ) | 
						
							| 13 | 12 | biimpar |  |-  ( ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> I e. dom D ) | 
						
							| 14 | 10 13 | jca |  |-  ( ( D Fn ( ~P B ^m ~P B ) /\ I e. ( ~P B ^m ~P B ) ) -> ( Fun D /\ I e. dom D ) ) | 
						
							| 15 | 8 14 | syl |  |-  ( ph -> ( Fun D /\ I e. dom D ) ) | 
						
							| 16 |  | funbrfvb |  |-  ( ( Fun D /\ I e. dom D ) -> ( ( D ` I ) = K <-> I D K ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( ( D ` I ) = K <-> I D K ) ) | 
						
							| 18 | 3 17 | mpbird |  |-  ( ph -> ( D ` I ) = K ) |