Metamath Proof Explorer


Theorem ntrclsfv1

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
ntrcls.d 𝐷 = ( 𝑂𝐵 )
ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
Assertion ntrclsfv1 ( 𝜑 → ( 𝐷𝐼 ) = 𝐾 )

Proof

Step Hyp Ref Expression
1 ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
2 ntrcls.d 𝐷 = ( 𝑂𝐵 )
3 ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
4 1 2 3 ntrclsf1o ( 𝜑𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵m 𝒫 𝐵 ) )
5 f1ofn ( 𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐷 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) )
6 4 5 syl ( 𝜑𝐷 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) )
7 1 2 3 ntrclsiex ( 𝜑𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
8 6 7 jca ( 𝜑 → ( 𝐷 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) ∧ 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) )
9 fnfun ( 𝐷 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) → Fun 𝐷 )
10 9 adantr ( ( 𝐷 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) ∧ 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → Fun 𝐷 )
11 fndm ( 𝐷 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) → dom 𝐷 = ( 𝒫 𝐵m 𝒫 𝐵 ) )
12 11 eleq2d ( 𝐷 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) → ( 𝐼 ∈ dom 𝐷𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) )
13 12 biimpar ( ( 𝐷 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) ∧ 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → 𝐼 ∈ dom 𝐷 )
14 10 13 jca ( ( 𝐷 Fn ( 𝒫 𝐵m 𝒫 𝐵 ) ∧ 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) ) → ( Fun 𝐷𝐼 ∈ dom 𝐷 ) )
15 8 14 syl ( 𝜑 → ( Fun 𝐷𝐼 ∈ dom 𝐷 ) )
16 funbrfvb ( ( Fun 𝐷𝐼 ∈ dom 𝐷 ) → ( ( 𝐷𝐼 ) = 𝐾𝐼 𝐷 𝐾 ) )
17 15 16 syl ( 𝜑 → ( ( 𝐷𝐼 ) = 𝐾𝐼 𝐷 𝐾 ) )
18 3 17 mpbird ( 𝜑 → ( 𝐷𝐼 ) = 𝐾 )