Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
4 |
1 2 3
|
ntrclsf1o |
⊢ ( 𝜑 → 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
5 |
|
f1ofn |
⊢ ( 𝐷 : ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
7 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
8 |
6 7
|
jca |
⊢ ( 𝜑 → ( 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ) |
9 |
|
fnfun |
⊢ ( 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → Fun 𝐷 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → Fun 𝐷 ) |
11 |
|
fndm |
⊢ ( 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → dom 𝐷 = ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → ( 𝐼 ∈ dom 𝐷 ↔ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → 𝐼 ∈ dom 𝐷 ) |
14 |
10 13
|
jca |
⊢ ( ( 𝐷 Fn ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷 ) ) |
15 |
8 14
|
syl |
⊢ ( 𝜑 → ( Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷 ) ) |
16 |
|
funbrfvb |
⊢ ( ( Fun 𝐷 ∧ 𝐼 ∈ dom 𝐷 ) → ( ( 𝐷 ‘ 𝐼 ) = 𝐾 ↔ 𝐼 𝐷 𝐾 ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) = 𝐾 ↔ 𝐼 𝐷 𝐾 ) ) |
18 |
3 17
|
mpbird |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |