| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o | ⊢ 𝑂  =  ( 𝑖  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑖  ↑m  𝒫  𝑖 )  ↦  ( 𝑗  ∈  𝒫  𝑖  ↦  ( 𝑖  ∖  ( 𝑘 ‘ ( 𝑖  ∖  𝑗 ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d | ⊢ 𝐷  =  ( 𝑂 ‘ 𝐵 ) | 
						
							| 3 |  | ntrcls.r | ⊢ ( 𝜑  →  𝐼 𝐷 𝐾 ) | 
						
							| 4 | 1 2 3 | ntrclsf1o | ⊢ ( 𝜑  →  𝐷 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 5 |  | f1ofn | ⊢ ( 𝐷 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐷  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  𝐷  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 7 | 1 2 3 | ntrclsiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 8 | 6 7 | jca | ⊢ ( 𝜑  →  ( 𝐷  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) ) | 
						
							| 9 |  | fnfun | ⊢ ( 𝐷  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  Fun  𝐷 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐷  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  Fun  𝐷 ) | 
						
							| 11 |  | fndm | ⊢ ( 𝐷  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  dom  𝐷  =  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( 𝐷  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  ( 𝐼  ∈  dom  𝐷  ↔  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) ) | 
						
							| 13 | 12 | biimpar | ⊢ ( ( 𝐷  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  𝐼  ∈  dom  𝐷 ) | 
						
							| 14 | 10 13 | jca | ⊢ ( ( 𝐷  Fn  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  ∧  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) )  →  ( Fun  𝐷  ∧  𝐼  ∈  dom  𝐷 ) ) | 
						
							| 15 | 8 14 | syl | ⊢ ( 𝜑  →  ( Fun  𝐷  ∧  𝐼  ∈  dom  𝐷 ) ) | 
						
							| 16 |  | funbrfvb | ⊢ ( ( Fun  𝐷  ∧  𝐼  ∈  dom  𝐷 )  →  ( ( 𝐷 ‘ 𝐼 )  =  𝐾  ↔  𝐼 𝐷 𝐾 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝐼 )  =  𝐾  ↔  𝐼 𝐷 𝐾 ) ) | 
						
							| 18 | 3 17 | mpbird | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐼 )  =  𝐾 ) |