Metamath Proof Explorer


Theorem ntrclsfv1

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
ntrcls.d D=OB
ntrcls.r φIDK
Assertion ntrclsfv1 φDI=K

Proof

Step Hyp Ref Expression
1 ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
2 ntrcls.d D=OB
3 ntrcls.r φIDK
4 1 2 3 ntrclsf1o φD:𝒫B𝒫B1-1 onto𝒫B𝒫B
5 f1ofn D:𝒫B𝒫B1-1 onto𝒫B𝒫BDFn𝒫B𝒫B
6 4 5 syl φDFn𝒫B𝒫B
7 1 2 3 ntrclsiex φI𝒫B𝒫B
8 6 7 jca φDFn𝒫B𝒫BI𝒫B𝒫B
9 fnfun DFn𝒫B𝒫BFunD
10 9 adantr DFn𝒫B𝒫BI𝒫B𝒫BFunD
11 fndm DFn𝒫B𝒫BdomD=𝒫B𝒫B
12 11 eleq2d DFn𝒫B𝒫BIdomDI𝒫B𝒫B
13 12 biimpar DFn𝒫B𝒫BI𝒫B𝒫BIdomD
14 10 13 jca DFn𝒫B𝒫BI𝒫B𝒫BFunDIdomD
15 8 14 syl φFunDIdomD
16 funbrfvb FunDIdomDDI=KIDK
17 15 16 syl φDI=KIDK
18 3 17 mpbird φDI=K