Metamath Proof Explorer


Theorem ntrclsfv1

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is a functional relation between them (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
Assertion ntrclsfv1 φ D I = K

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 1 2 3 ntrclsf1o φ D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
5 f1ofn D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B D Fn 𝒫 B 𝒫 B
6 4 5 syl φ D Fn 𝒫 B 𝒫 B
7 1 2 3 ntrclsiex φ I 𝒫 B 𝒫 B
8 6 7 jca φ D Fn 𝒫 B 𝒫 B I 𝒫 B 𝒫 B
9 fnfun D Fn 𝒫 B 𝒫 B Fun D
10 9 adantr D Fn 𝒫 B 𝒫 B I 𝒫 B 𝒫 B Fun D
11 fndm D Fn 𝒫 B 𝒫 B dom D = 𝒫 B 𝒫 B
12 11 eleq2d D Fn 𝒫 B 𝒫 B I dom D I 𝒫 B 𝒫 B
13 12 biimpar D Fn 𝒫 B 𝒫 B I 𝒫 B 𝒫 B I dom D
14 10 13 jca D Fn 𝒫 B 𝒫 B I 𝒫 B 𝒫 B Fun D I dom D
15 8 14 syl φ Fun D I dom D
16 funbrfvb Fun D I dom D D I = K I D K
17 15 16 syl φ D I = K I D K
18 3 17 mpbird φ D I = K