| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o | ⊢ 𝑂  =  ( 𝑖  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑖  ↑m  𝒫  𝑖 )  ↦  ( 𝑗  ∈  𝒫  𝑖  ↦  ( 𝑖  ∖  ( 𝑘 ‘ ( 𝑖  ∖  𝑗 ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d | ⊢ 𝐷  =  ( 𝑂 ‘ 𝐵 ) | 
						
							| 3 |  | ntrcls.r | ⊢ ( 𝜑  →  𝐼 𝐷 𝐾 ) | 
						
							| 4 | 1 2 3 | ntrclsf1o | ⊢ ( 𝜑  →  𝐷 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 5 |  | f1orel | ⊢ ( 𝐷 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  Rel  𝐷 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  Rel  𝐷 ) | 
						
							| 7 |  | releldm | ⊢ ( ( Rel  𝐷  ∧  𝐼 𝐷 𝐾 )  →  𝐼  ∈  dom  𝐷 ) | 
						
							| 8 | 6 3 7 | syl2anc | ⊢ ( 𝜑  →  𝐼  ∈  dom  𝐷 ) | 
						
							| 9 |  | f1odm | ⊢ ( 𝐷 : ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) –1-1-onto→ ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  dom  𝐷  =  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  dom  𝐷  =  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 11 | 8 10 | eleqtrd | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) |