| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 | 1 2 3 | ntrclsf1o |  |-  ( ph -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) ) | 
						
							| 5 |  | f1orel |  |-  ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> Rel D ) | 
						
							| 6 | 4 5 | syl |  |-  ( ph -> Rel D ) | 
						
							| 7 |  | releldm |  |-  ( ( Rel D /\ I D K ) -> I e. dom D ) | 
						
							| 8 | 6 3 7 | syl2anc |  |-  ( ph -> I e. dom D ) | 
						
							| 9 |  | f1odm |  |-  ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> dom D = ( ~P B ^m ~P B ) ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> dom D = ( ~P B ^m ~P B ) ) | 
						
							| 11 | 8 10 | eleqtrd |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) |