Metamath Proof Explorer


Theorem ntrclsiex

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then those functions are maps of subsets to subsets. (Contributed by RP, 21-May-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
Assertion ntrclsiex
|- ( ph -> I e. ( ~P B ^m ~P B ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 1 2 3 ntrclsf1o
 |-  ( ph -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) )
5 f1orel
 |-  ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> Rel D )
6 4 5 syl
 |-  ( ph -> Rel D )
7 releldm
 |-  ( ( Rel D /\ I D K ) -> I e. dom D )
8 6 3 7 syl2anc
 |-  ( ph -> I e. dom D )
9 f1odm
 |-  ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> dom D = ( ~P B ^m ~P B ) )
10 4 9 syl
 |-  ( ph -> dom D = ( ~P B ^m ~P B ) )
11 8 10 eleqtrd
 |-  ( ph -> I e. ( ~P B ^m ~P B ) )