| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
|- D = ( O ` B ) |
| 3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
| 4 |
1 2 3
|
ntrclsf1o |
|- ( ph -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) ) |
| 5 |
|
f1orel |
|- ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> Rel D ) |
| 6 |
4 5
|
syl |
|- ( ph -> Rel D ) |
| 7 |
|
releldm |
|- ( ( Rel D /\ I D K ) -> I e. dom D ) |
| 8 |
6 3 7
|
syl2anc |
|- ( ph -> I e. dom D ) |
| 9 |
|
f1odm |
|- ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> dom D = ( ~P B ^m ~P B ) ) |
| 10 |
4 9
|
syl |
|- ( ph -> dom D = ( ~P B ^m ~P B ) ) |
| 11 |
8 10
|
eleqtrd |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |