Metamath Proof Explorer


Theorem ntrclsneine0

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 21-May-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
Assertion ntrclsneine0
|- ( ph -> ( A. x e. B E. s e. ~P B x e. ( I ` s ) <-> A. x e. B E. s e. ~P B -. x e. ( K ` s ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 3 adantr
 |-  ( ( ph /\ x e. B ) -> I D K )
5 simpr
 |-  ( ( ph /\ x e. B ) -> x e. B )
6 1 2 4 5 ntrclsneine0lem
 |-  ( ( ph /\ x e. B ) -> ( E. s e. ~P B x e. ( I ` s ) <-> E. s e. ~P B -. x e. ( K ` s ) ) )
7 6 ralbidva
 |-  ( ph -> ( A. x e. B E. s e. ~P B x e. ( I ` s ) <-> A. x e. B E. s e. ~P B -. x e. ( K ` s ) ) )