Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 21-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrcls.o | |- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
|
| ntrcls.d | |- D = ( O ` B ) |
||
| ntrcls.r | |- ( ph -> I D K ) |
||
| Assertion | ntrclsneine0 | |- ( ph -> ( A. x e. B E. s e. ~P B x e. ( I ` s ) <-> A. x e. B E. s e. ~P B -. x e. ( K ` s ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrcls.o | |- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
|
| 2 | ntrcls.d | |- D = ( O ` B ) |
|
| 3 | ntrcls.r | |- ( ph -> I D K ) |
|
| 4 | 3 | adantr | |- ( ( ph /\ x e. B ) -> I D K ) |
| 5 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) |
|
| 6 | 1 2 4 5 | ntrclsneine0lem | |- ( ( ph /\ x e. B ) -> ( E. s e. ~P B x e. ( I ` s ) <-> E. s e. ~P B -. x e. ( K ` s ) ) ) |
| 7 | 6 | ralbidva | |- ( ph -> ( A. x e. B E. s e. ~P B x e. ( I ` s ) <-> A. x e. B E. s e. ~P B -. x e. ( K ` s ) ) ) |