Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
2 |
|
ntrcls.d |
|- D = ( O ` B ) |
3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
4 |
1 2 3
|
ntrclsfv1 |
|- ( ph -> ( D ` I ) = K ) |
5 |
4
|
fveq1d |
|- ( ph -> ( ( D ` I ) ` (/) ) = ( K ` (/) ) ) |
6 |
2 3
|
ntrclsbex |
|- ( ph -> B e. _V ) |
7 |
1 2 3
|
ntrclsiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
8 |
|
eqid |
|- ( D ` I ) = ( D ` I ) |
9 |
|
0elpw |
|- (/) e. ~P B |
10 |
9
|
a1i |
|- ( ph -> (/) e. ~P B ) |
11 |
|
eqid |
|- ( ( D ` I ) ` (/) ) = ( ( D ` I ) ` (/) ) |
12 |
1 2 6 7 8 10 11
|
dssmapfv3d |
|- ( ph -> ( ( D ` I ) ` (/) ) = ( B \ ( I ` ( B \ (/) ) ) ) ) |
13 |
5 12
|
eqtr3d |
|- ( ph -> ( K ` (/) ) = ( B \ ( I ` ( B \ (/) ) ) ) ) |
14 |
|
dif0 |
|- ( B \ (/) ) = B |
15 |
14
|
fveq2i |
|- ( I ` ( B \ (/) ) ) = ( I ` B ) |
16 |
|
id |
|- ( ( I ` B ) = B -> ( I ` B ) = B ) |
17 |
15 16
|
syl5eq |
|- ( ( I ` B ) = B -> ( I ` ( B \ (/) ) ) = B ) |
18 |
17
|
difeq2d |
|- ( ( I ` B ) = B -> ( B \ ( I ` ( B \ (/) ) ) ) = ( B \ B ) ) |
19 |
|
difid |
|- ( B \ B ) = (/) |
20 |
18 19
|
eqtrdi |
|- ( ( I ` B ) = B -> ( B \ ( I ` ( B \ (/) ) ) ) = (/) ) |
21 |
13 20
|
sylan9eq |
|- ( ( ph /\ ( I ` B ) = B ) -> ( K ` (/) ) = (/) ) |
22 |
|
pwidg |
|- ( B e. _V -> B e. ~P B ) |
23 |
6 22
|
syl |
|- ( ph -> B e. ~P B ) |
24 |
1 2 3 23
|
ntrclsfv |
|- ( ph -> ( I ` B ) = ( B \ ( K ` ( B \ B ) ) ) ) |
25 |
19
|
fveq2i |
|- ( K ` ( B \ B ) ) = ( K ` (/) ) |
26 |
|
id |
|- ( ( K ` (/) ) = (/) -> ( K ` (/) ) = (/) ) |
27 |
25 26
|
syl5eq |
|- ( ( K ` (/) ) = (/) -> ( K ` ( B \ B ) ) = (/) ) |
28 |
27
|
difeq2d |
|- ( ( K ` (/) ) = (/) -> ( B \ ( K ` ( B \ B ) ) ) = ( B \ (/) ) ) |
29 |
28 14
|
eqtrdi |
|- ( ( K ` (/) ) = (/) -> ( B \ ( K ` ( B \ B ) ) ) = B ) |
30 |
24 29
|
sylan9eq |
|- ( ( ph /\ ( K ` (/) ) = (/) ) -> ( I ` B ) = B ) |
31 |
21 30
|
impbida |
|- ( ph -> ( ( I ` B ) = B <-> ( K ` (/) ) = (/) ) ) |