| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
|- D = ( O ` B ) |
| 3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
| 4 |
1 2 3
|
ntrclsfv1 |
|- ( ph -> ( D ` I ) = K ) |
| 5 |
4
|
fveq1d |
|- ( ph -> ( ( D ` I ) ` (/) ) = ( K ` (/) ) ) |
| 6 |
2 3
|
ntrclsbex |
|- ( ph -> B e. _V ) |
| 7 |
1 2 3
|
ntrclsiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
| 8 |
|
eqid |
|- ( D ` I ) = ( D ` I ) |
| 9 |
|
0elpw |
|- (/) e. ~P B |
| 10 |
9
|
a1i |
|- ( ph -> (/) e. ~P B ) |
| 11 |
|
eqid |
|- ( ( D ` I ) ` (/) ) = ( ( D ` I ) ` (/) ) |
| 12 |
1 2 6 7 8 10 11
|
dssmapfv3d |
|- ( ph -> ( ( D ` I ) ` (/) ) = ( B \ ( I ` ( B \ (/) ) ) ) ) |
| 13 |
5 12
|
eqtr3d |
|- ( ph -> ( K ` (/) ) = ( B \ ( I ` ( B \ (/) ) ) ) ) |
| 14 |
|
dif0 |
|- ( B \ (/) ) = B |
| 15 |
14
|
fveq2i |
|- ( I ` ( B \ (/) ) ) = ( I ` B ) |
| 16 |
|
id |
|- ( ( I ` B ) = B -> ( I ` B ) = B ) |
| 17 |
15 16
|
eqtrid |
|- ( ( I ` B ) = B -> ( I ` ( B \ (/) ) ) = B ) |
| 18 |
17
|
difeq2d |
|- ( ( I ` B ) = B -> ( B \ ( I ` ( B \ (/) ) ) ) = ( B \ B ) ) |
| 19 |
|
difid |
|- ( B \ B ) = (/) |
| 20 |
18 19
|
eqtrdi |
|- ( ( I ` B ) = B -> ( B \ ( I ` ( B \ (/) ) ) ) = (/) ) |
| 21 |
13 20
|
sylan9eq |
|- ( ( ph /\ ( I ` B ) = B ) -> ( K ` (/) ) = (/) ) |
| 22 |
|
pwidg |
|- ( B e. _V -> B e. ~P B ) |
| 23 |
6 22
|
syl |
|- ( ph -> B e. ~P B ) |
| 24 |
1 2 3 23
|
ntrclsfv |
|- ( ph -> ( I ` B ) = ( B \ ( K ` ( B \ B ) ) ) ) |
| 25 |
19
|
fveq2i |
|- ( K ` ( B \ B ) ) = ( K ` (/) ) |
| 26 |
|
id |
|- ( ( K ` (/) ) = (/) -> ( K ` (/) ) = (/) ) |
| 27 |
25 26
|
eqtrid |
|- ( ( K ` (/) ) = (/) -> ( K ` ( B \ B ) ) = (/) ) |
| 28 |
27
|
difeq2d |
|- ( ( K ` (/) ) = (/) -> ( B \ ( K ` ( B \ B ) ) ) = ( B \ (/) ) ) |
| 29 |
28 14
|
eqtrdi |
|- ( ( K ` (/) ) = (/) -> ( B \ ( K ` ( B \ B ) ) ) = B ) |
| 30 |
24 29
|
sylan9eq |
|- ( ( ph /\ ( K ` (/) ) = (/) ) -> ( I ` B ) = B ) |
| 31 |
21 30
|
impbida |
|- ( ph -> ( ( I ` B ) = B <-> ( K ` (/) ) = (/) ) ) |