| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 | 1 2 3 | ntrclsfv1 |  |-  ( ph -> ( D ` I ) = K ) | 
						
							| 5 | 4 | fveq1d |  |-  ( ph -> ( ( D ` I ) ` (/) ) = ( K ` (/) ) ) | 
						
							| 6 | 2 3 | ntrclsbex |  |-  ( ph -> B e. _V ) | 
						
							| 7 | 1 2 3 | ntrclsiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 8 |  | eqid |  |-  ( D ` I ) = ( D ` I ) | 
						
							| 9 |  | 0elpw |  |-  (/) e. ~P B | 
						
							| 10 | 9 | a1i |  |-  ( ph -> (/) e. ~P B ) | 
						
							| 11 |  | eqid |  |-  ( ( D ` I ) ` (/) ) = ( ( D ` I ) ` (/) ) | 
						
							| 12 | 1 2 6 7 8 10 11 | dssmapfv3d |  |-  ( ph -> ( ( D ` I ) ` (/) ) = ( B \ ( I ` ( B \ (/) ) ) ) ) | 
						
							| 13 | 5 12 | eqtr3d |  |-  ( ph -> ( K ` (/) ) = ( B \ ( I ` ( B \ (/) ) ) ) ) | 
						
							| 14 |  | dif0 |  |-  ( B \ (/) ) = B | 
						
							| 15 | 14 | fveq2i |  |-  ( I ` ( B \ (/) ) ) = ( I ` B ) | 
						
							| 16 |  | id |  |-  ( ( I ` B ) = B -> ( I ` B ) = B ) | 
						
							| 17 | 15 16 | eqtrid |  |-  ( ( I ` B ) = B -> ( I ` ( B \ (/) ) ) = B ) | 
						
							| 18 | 17 | difeq2d |  |-  ( ( I ` B ) = B -> ( B \ ( I ` ( B \ (/) ) ) ) = ( B \ B ) ) | 
						
							| 19 |  | difid |  |-  ( B \ B ) = (/) | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( ( I ` B ) = B -> ( B \ ( I ` ( B \ (/) ) ) ) = (/) ) | 
						
							| 21 | 13 20 | sylan9eq |  |-  ( ( ph /\ ( I ` B ) = B ) -> ( K ` (/) ) = (/) ) | 
						
							| 22 |  | pwidg |  |-  ( B e. _V -> B e. ~P B ) | 
						
							| 23 | 6 22 | syl |  |-  ( ph -> B e. ~P B ) | 
						
							| 24 | 1 2 3 23 | ntrclsfv |  |-  ( ph -> ( I ` B ) = ( B \ ( K ` ( B \ B ) ) ) ) | 
						
							| 25 | 19 | fveq2i |  |-  ( K ` ( B \ B ) ) = ( K ` (/) ) | 
						
							| 26 |  | id |  |-  ( ( K ` (/) ) = (/) -> ( K ` (/) ) = (/) ) | 
						
							| 27 | 25 26 | eqtrid |  |-  ( ( K ` (/) ) = (/) -> ( K ` ( B \ B ) ) = (/) ) | 
						
							| 28 | 27 | difeq2d |  |-  ( ( K ` (/) ) = (/) -> ( B \ ( K ` ( B \ B ) ) ) = ( B \ (/) ) ) | 
						
							| 29 | 28 14 | eqtrdi |  |-  ( ( K ` (/) ) = (/) -> ( B \ ( K ` ( B \ B ) ) ) = B ) | 
						
							| 30 | 24 29 | sylan9eq |  |-  ( ( ph /\ ( K ` (/) ) = (/) ) -> ( I ` B ) = B ) | 
						
							| 31 | 21 30 | impbida |  |-  ( ph -> ( ( I ` B ) = B <-> ( K ` (/) ) = (/) ) ) |