| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
|- D = ( O ` B ) |
| 3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
| 4 |
|
sseq1 |
|- ( s = b -> ( s C_ t <-> b C_ t ) ) |
| 5 |
|
fveq2 |
|- ( s = b -> ( I ` s ) = ( I ` b ) ) |
| 6 |
5
|
sseq1d |
|- ( s = b -> ( ( I ` s ) C_ ( I ` t ) <-> ( I ` b ) C_ ( I ` t ) ) ) |
| 7 |
4 6
|
imbi12d |
|- ( s = b -> ( ( s C_ t -> ( I ` s ) C_ ( I ` t ) ) <-> ( b C_ t -> ( I ` b ) C_ ( I ` t ) ) ) ) |
| 8 |
|
sseq2 |
|- ( t = a -> ( b C_ t <-> b C_ a ) ) |
| 9 |
|
fveq2 |
|- ( t = a -> ( I ` t ) = ( I ` a ) ) |
| 10 |
9
|
sseq2d |
|- ( t = a -> ( ( I ` b ) C_ ( I ` t ) <-> ( I ` b ) C_ ( I ` a ) ) ) |
| 11 |
8 10
|
imbi12d |
|- ( t = a -> ( ( b C_ t -> ( I ` b ) C_ ( I ` t ) ) <-> ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) ) ) |
| 12 |
7 11
|
cbvral2vw |
|- ( A. s e. ~P B A. t e. ~P B ( s C_ t -> ( I ` s ) C_ ( I ` t ) ) <-> A. b e. ~P B A. a e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) ) |
| 13 |
|
ralcom |
|- ( A. b e. ~P B A. a e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> A. a e. ~P B A. b e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) ) |
| 14 |
12 13
|
bitri |
|- ( A. s e. ~P B A. t e. ~P B ( s C_ t -> ( I ` s ) C_ ( I ` t ) ) <-> A. a e. ~P B A. b e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) ) |
| 15 |
|
simpl |
|- ( ( ph /\ s e. ~P B ) -> ph ) |
| 16 |
2 3
|
ntrclsbex |
|- ( ph -> B e. _V ) |
| 17 |
15 16
|
syl |
|- ( ( ph /\ s e. ~P B ) -> B e. _V ) |
| 18 |
|
difssd |
|- ( ( ph /\ s e. ~P B ) -> ( B \ s ) C_ B ) |
| 19 |
17 18
|
sselpwd |
|- ( ( ph /\ s e. ~P B ) -> ( B \ s ) e. ~P B ) |
| 20 |
|
elpwi |
|- ( a e. ~P B -> a C_ B ) |
| 21 |
|
simpl |
|- ( ( B e. _V /\ a C_ B ) -> B e. _V ) |
| 22 |
|
difssd |
|- ( ( B e. _V /\ a C_ B ) -> ( B \ a ) C_ B ) |
| 23 |
21 22
|
sselpwd |
|- ( ( B e. _V /\ a C_ B ) -> ( B \ a ) e. ~P B ) |
| 24 |
|
simpr |
|- ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> s = ( B \ a ) ) |
| 25 |
24
|
difeq2d |
|- ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> ( B \ s ) = ( B \ ( B \ a ) ) ) |
| 26 |
25
|
eqeq2d |
|- ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> ( a = ( B \ s ) <-> a = ( B \ ( B \ a ) ) ) ) |
| 27 |
|
eqcom |
|- ( a = ( B \ ( B \ a ) ) <-> ( B \ ( B \ a ) ) = a ) |
| 28 |
26 27
|
bitrdi |
|- ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> ( a = ( B \ s ) <-> ( B \ ( B \ a ) ) = a ) ) |
| 29 |
|
dfss4 |
|- ( a C_ B <-> ( B \ ( B \ a ) ) = a ) |
| 30 |
29
|
biimpi |
|- ( a C_ B -> ( B \ ( B \ a ) ) = a ) |
| 31 |
30
|
adantl |
|- ( ( B e. _V /\ a C_ B ) -> ( B \ ( B \ a ) ) = a ) |
| 32 |
23 28 31
|
rspcedvd |
|- ( ( B e. _V /\ a C_ B ) -> E. s e. ~P B a = ( B \ s ) ) |
| 33 |
16 20 32
|
syl2an |
|- ( ( ph /\ a e. ~P B ) -> E. s e. ~P B a = ( B \ s ) ) |
| 34 |
|
simpl1 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ph ) |
| 35 |
34 16
|
syl |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> B e. _V ) |
| 36 |
|
difssd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ( B \ t ) C_ B ) |
| 37 |
35 36
|
sselpwd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) |
| 38 |
|
elpwi |
|- ( b e. ~P B -> b C_ B ) |
| 39 |
|
simpl |
|- ( ( B e. _V /\ b C_ B ) -> B e. _V ) |
| 40 |
|
difssd |
|- ( ( B e. _V /\ b C_ B ) -> ( B \ b ) C_ B ) |
| 41 |
39 40
|
sselpwd |
|- ( ( B e. _V /\ b C_ B ) -> ( B \ b ) e. ~P B ) |
| 42 |
|
simpr |
|- ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> t = ( B \ b ) ) |
| 43 |
42
|
difeq2d |
|- ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> ( B \ t ) = ( B \ ( B \ b ) ) ) |
| 44 |
43
|
eqeq2d |
|- ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> ( b = ( B \ t ) <-> b = ( B \ ( B \ b ) ) ) ) |
| 45 |
|
eqcom |
|- ( b = ( B \ ( B \ b ) ) <-> ( B \ ( B \ b ) ) = b ) |
| 46 |
44 45
|
bitrdi |
|- ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> ( b = ( B \ t ) <-> ( B \ ( B \ b ) ) = b ) ) |
| 47 |
|
dfss4 |
|- ( b C_ B <-> ( B \ ( B \ b ) ) = b ) |
| 48 |
47
|
biimpi |
|- ( b C_ B -> ( B \ ( B \ b ) ) = b ) |
| 49 |
48
|
adantl |
|- ( ( B e. _V /\ b C_ B ) -> ( B \ ( B \ b ) ) = b ) |
| 50 |
41 46 49
|
rspcedvd |
|- ( ( B e. _V /\ b C_ B ) -> E. t e. ~P B b = ( B \ t ) ) |
| 51 |
16 38 50
|
syl2an |
|- ( ( ph /\ b e. ~P B ) -> E. t e. ~P B b = ( B \ t ) ) |
| 52 |
51
|
3ad2antl1 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ b e. ~P B ) -> E. t e. ~P B b = ( B \ t ) ) |
| 53 |
|
simp12 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> s e. ~P B ) |
| 54 |
53
|
elpwid |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> s C_ B ) |
| 55 |
|
simp2 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> t e. ~P B ) |
| 56 |
55
|
elpwid |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> t C_ B ) |
| 57 |
|
sscon34b |
|- ( ( s C_ B /\ t C_ B ) -> ( s C_ t <-> ( B \ t ) C_ ( B \ s ) ) ) |
| 58 |
54 56 57
|
syl2anc |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( s C_ t <-> ( B \ t ) C_ ( B \ s ) ) ) |
| 59 |
58
|
bicomd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( B \ t ) C_ ( B \ s ) <-> s C_ t ) ) |
| 60 |
|
simp11 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ph ) |
| 61 |
1 2 3
|
ntrclsiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
| 62 |
60 61
|
syl |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> I e. ( ~P B ^m ~P B ) ) |
| 63 |
|
elmapi |
|- ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) |
| 64 |
62 63
|
syl |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> I : ~P B --> ~P B ) |
| 65 |
60 16
|
syl |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> B e. _V ) |
| 66 |
|
difssd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( B \ t ) C_ B ) |
| 67 |
65 66
|
sselpwd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( B \ t ) e. ~P B ) |
| 68 |
64 67
|
ffvelcdmd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` ( B \ t ) ) e. ~P B ) |
| 69 |
68
|
elpwid |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` ( B \ t ) ) C_ B ) |
| 70 |
|
difssd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( B \ s ) C_ B ) |
| 71 |
65 70
|
sselpwd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( B \ s ) e. ~P B ) |
| 72 |
64 71
|
ffvelcdmd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` ( B \ s ) ) e. ~P B ) |
| 73 |
72
|
elpwid |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` ( B \ s ) ) C_ B ) |
| 74 |
|
sscon34b |
|- ( ( ( I ` ( B \ t ) ) C_ B /\ ( I ` ( B \ s ) ) C_ B ) -> ( ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) |
| 75 |
69 73 74
|
syl2anc |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) |
| 76 |
59 75
|
imbi12d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( B \ t ) C_ ( B \ s ) -> ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) ) <-> ( s C_ t -> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) ) |
| 77 |
|
simp3 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> b = ( B \ t ) ) |
| 78 |
|
simp13 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> a = ( B \ s ) ) |
| 79 |
77 78
|
sseq12d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( b C_ a <-> ( B \ t ) C_ ( B \ s ) ) ) |
| 80 |
77
|
fveq2d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` b ) = ( I ` ( B \ t ) ) ) |
| 81 |
78
|
fveq2d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` a ) = ( I ` ( B \ s ) ) ) |
| 82 |
80 81
|
sseq12d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( I ` b ) C_ ( I ` a ) <-> ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) ) ) |
| 83 |
79 82
|
imbi12d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> ( ( B \ t ) C_ ( B \ s ) -> ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) ) ) ) |
| 84 |
1 2 3
|
ntrclsfv1 |
|- ( ph -> ( D ` I ) = K ) |
| 85 |
60 84
|
syl |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( D ` I ) = K ) |
| 86 |
85
|
fveq1d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( D ` I ) ` s ) = ( K ` s ) ) |
| 87 |
|
eqid |
|- ( D ` I ) = ( D ` I ) |
| 88 |
|
eqid |
|- ( ( D ` I ) ` s ) = ( ( D ` I ) ` s ) |
| 89 |
1 2 65 62 87 53 88
|
dssmapfv3d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( D ` I ) ` s ) = ( B \ ( I ` ( B \ s ) ) ) ) |
| 90 |
86 89
|
eqtr3d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( K ` s ) = ( B \ ( I ` ( B \ s ) ) ) ) |
| 91 |
60 3
|
syl |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> I D K ) |
| 92 |
1 2 91
|
ntrclsfv1 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( D ` I ) = K ) |
| 93 |
92
|
fveq1d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( D ` I ) ` t ) = ( K ` t ) ) |
| 94 |
|
eqid |
|- ( ( D ` I ) ` t ) = ( ( D ` I ) ` t ) |
| 95 |
1 2 65 62 87 55 94
|
dssmapfv3d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( D ` I ) ` t ) = ( B \ ( I ` ( B \ t ) ) ) ) |
| 96 |
93 95
|
eqtr3d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( K ` t ) = ( B \ ( I ` ( B \ t ) ) ) ) |
| 97 |
90 96
|
sseq12d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( K ` s ) C_ ( K ` t ) <-> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) |
| 98 |
97
|
imbi2d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) <-> ( s C_ t -> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) ) |
| 99 |
76 83 98
|
3bitr4d |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) ) ) |
| 100 |
37 52 99
|
ralxfrd2 |
|- ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) -> ( A. b e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> A. t e. ~P B ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) ) ) |
| 101 |
19 33 100
|
ralxfrd2 |
|- ( ph -> ( A. a e. ~P B A. b e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> A. s e. ~P B A. t e. ~P B ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) ) ) |
| 102 |
14 101
|
bitrid |
|- ( ph -> ( A. s e. ~P B A. t e. ~P B ( s C_ t -> ( I ` s ) C_ ( I ` t ) ) <-> A. s e. ~P B A. t e. ~P B ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) ) ) |