| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 |  | sseq1 |  |-  ( s = b -> ( s C_ t <-> b C_ t ) ) | 
						
							| 5 |  | fveq2 |  |-  ( s = b -> ( I ` s ) = ( I ` b ) ) | 
						
							| 6 | 5 | sseq1d |  |-  ( s = b -> ( ( I ` s ) C_ ( I ` t ) <-> ( I ` b ) C_ ( I ` t ) ) ) | 
						
							| 7 | 4 6 | imbi12d |  |-  ( s = b -> ( ( s C_ t -> ( I ` s ) C_ ( I ` t ) ) <-> ( b C_ t -> ( I ` b ) C_ ( I ` t ) ) ) ) | 
						
							| 8 |  | sseq2 |  |-  ( t = a -> ( b C_ t <-> b C_ a ) ) | 
						
							| 9 |  | fveq2 |  |-  ( t = a -> ( I ` t ) = ( I ` a ) ) | 
						
							| 10 | 9 | sseq2d |  |-  ( t = a -> ( ( I ` b ) C_ ( I ` t ) <-> ( I ` b ) C_ ( I ` a ) ) ) | 
						
							| 11 | 8 10 | imbi12d |  |-  ( t = a -> ( ( b C_ t -> ( I ` b ) C_ ( I ` t ) ) <-> ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) ) ) | 
						
							| 12 | 7 11 | cbvral2vw |  |-  ( A. s e. ~P B A. t e. ~P B ( s C_ t -> ( I ` s ) C_ ( I ` t ) ) <-> A. b e. ~P B A. a e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) ) | 
						
							| 13 |  | ralcom |  |-  ( A. b e. ~P B A. a e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> A. a e. ~P B A. b e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) ) | 
						
							| 14 | 12 13 | bitri |  |-  ( A. s e. ~P B A. t e. ~P B ( s C_ t -> ( I ` s ) C_ ( I ` t ) ) <-> A. a e. ~P B A. b e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) ) | 
						
							| 15 |  | simpl |  |-  ( ( ph /\ s e. ~P B ) -> ph ) | 
						
							| 16 | 2 3 | ntrclsbex |  |-  ( ph -> B e. _V ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ph /\ s e. ~P B ) -> B e. _V ) | 
						
							| 18 |  | difssd |  |-  ( ( ph /\ s e. ~P B ) -> ( B \ s ) C_ B ) | 
						
							| 19 | 17 18 | sselpwd |  |-  ( ( ph /\ s e. ~P B ) -> ( B \ s ) e. ~P B ) | 
						
							| 20 |  | elpwi |  |-  ( a e. ~P B -> a C_ B ) | 
						
							| 21 |  | simpl |  |-  ( ( B e. _V /\ a C_ B ) -> B e. _V ) | 
						
							| 22 |  | difssd |  |-  ( ( B e. _V /\ a C_ B ) -> ( B \ a ) C_ B ) | 
						
							| 23 | 21 22 | sselpwd |  |-  ( ( B e. _V /\ a C_ B ) -> ( B \ a ) e. ~P B ) | 
						
							| 24 |  | simpr |  |-  ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> s = ( B \ a ) ) | 
						
							| 25 | 24 | difeq2d |  |-  ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> ( B \ s ) = ( B \ ( B \ a ) ) ) | 
						
							| 26 | 25 | eqeq2d |  |-  ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> ( a = ( B \ s ) <-> a = ( B \ ( B \ a ) ) ) ) | 
						
							| 27 |  | eqcom |  |-  ( a = ( B \ ( B \ a ) ) <-> ( B \ ( B \ a ) ) = a ) | 
						
							| 28 | 26 27 | bitrdi |  |-  ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> ( a = ( B \ s ) <-> ( B \ ( B \ a ) ) = a ) ) | 
						
							| 29 |  | dfss4 |  |-  ( a C_ B <-> ( B \ ( B \ a ) ) = a ) | 
						
							| 30 | 29 | biimpi |  |-  ( a C_ B -> ( B \ ( B \ a ) ) = a ) | 
						
							| 31 | 30 | adantl |  |-  ( ( B e. _V /\ a C_ B ) -> ( B \ ( B \ a ) ) = a ) | 
						
							| 32 | 23 28 31 | rspcedvd |  |-  ( ( B e. _V /\ a C_ B ) -> E. s e. ~P B a = ( B \ s ) ) | 
						
							| 33 | 16 20 32 | syl2an |  |-  ( ( ph /\ a e. ~P B ) -> E. s e. ~P B a = ( B \ s ) ) | 
						
							| 34 |  | simpl1 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ph ) | 
						
							| 35 | 34 16 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> B e. _V ) | 
						
							| 36 |  | difssd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ( B \ t ) C_ B ) | 
						
							| 37 | 35 36 | sselpwd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) | 
						
							| 38 |  | elpwi |  |-  ( b e. ~P B -> b C_ B ) | 
						
							| 39 |  | simpl |  |-  ( ( B e. _V /\ b C_ B ) -> B e. _V ) | 
						
							| 40 |  | difssd |  |-  ( ( B e. _V /\ b C_ B ) -> ( B \ b ) C_ B ) | 
						
							| 41 | 39 40 | sselpwd |  |-  ( ( B e. _V /\ b C_ B ) -> ( B \ b ) e. ~P B ) | 
						
							| 42 |  | simpr |  |-  ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> t = ( B \ b ) ) | 
						
							| 43 | 42 | difeq2d |  |-  ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> ( B \ t ) = ( B \ ( B \ b ) ) ) | 
						
							| 44 | 43 | eqeq2d |  |-  ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> ( b = ( B \ t ) <-> b = ( B \ ( B \ b ) ) ) ) | 
						
							| 45 |  | eqcom |  |-  ( b = ( B \ ( B \ b ) ) <-> ( B \ ( B \ b ) ) = b ) | 
						
							| 46 | 44 45 | bitrdi |  |-  ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> ( b = ( B \ t ) <-> ( B \ ( B \ b ) ) = b ) ) | 
						
							| 47 |  | dfss4 |  |-  ( b C_ B <-> ( B \ ( B \ b ) ) = b ) | 
						
							| 48 | 47 | biimpi |  |-  ( b C_ B -> ( B \ ( B \ b ) ) = b ) | 
						
							| 49 | 48 | adantl |  |-  ( ( B e. _V /\ b C_ B ) -> ( B \ ( B \ b ) ) = b ) | 
						
							| 50 | 41 46 49 | rspcedvd |  |-  ( ( B e. _V /\ b C_ B ) -> E. t e. ~P B b = ( B \ t ) ) | 
						
							| 51 | 16 38 50 | syl2an |  |-  ( ( ph /\ b e. ~P B ) -> E. t e. ~P B b = ( B \ t ) ) | 
						
							| 52 | 51 | 3ad2antl1 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ b e. ~P B ) -> E. t e. ~P B b = ( B \ t ) ) | 
						
							| 53 |  | simp12 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> s e. ~P B ) | 
						
							| 54 | 53 | elpwid |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> s C_ B ) | 
						
							| 55 |  | simp2 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> t e. ~P B ) | 
						
							| 56 | 55 | elpwid |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> t C_ B ) | 
						
							| 57 |  | sscon34b |  |-  ( ( s C_ B /\ t C_ B ) -> ( s C_ t <-> ( B \ t ) C_ ( B \ s ) ) ) | 
						
							| 58 | 54 56 57 | syl2anc |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( s C_ t <-> ( B \ t ) C_ ( B \ s ) ) ) | 
						
							| 59 | 58 | bicomd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( B \ t ) C_ ( B \ s ) <-> s C_ t ) ) | 
						
							| 60 |  | simp11 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ph ) | 
						
							| 61 | 1 2 3 | ntrclsiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 62 | 60 61 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 63 |  | elmapi |  |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) | 
						
							| 64 | 62 63 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> I : ~P B --> ~P B ) | 
						
							| 65 | 60 16 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> B e. _V ) | 
						
							| 66 |  | difssd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( B \ t ) C_ B ) | 
						
							| 67 | 65 66 | sselpwd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( B \ t ) e. ~P B ) | 
						
							| 68 | 64 67 | ffvelcdmd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` ( B \ t ) ) e. ~P B ) | 
						
							| 69 | 68 | elpwid |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` ( B \ t ) ) C_ B ) | 
						
							| 70 |  | difssd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( B \ s ) C_ B ) | 
						
							| 71 | 65 70 | sselpwd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( B \ s ) e. ~P B ) | 
						
							| 72 | 64 71 | ffvelcdmd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` ( B \ s ) ) e. ~P B ) | 
						
							| 73 | 72 | elpwid |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` ( B \ s ) ) C_ B ) | 
						
							| 74 |  | sscon34b |  |-  ( ( ( I ` ( B \ t ) ) C_ B /\ ( I ` ( B \ s ) ) C_ B ) -> ( ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) | 
						
							| 75 | 69 73 74 | syl2anc |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) | 
						
							| 76 | 59 75 | imbi12d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( B \ t ) C_ ( B \ s ) -> ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) ) <-> ( s C_ t -> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) ) | 
						
							| 77 |  | simp3 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> b = ( B \ t ) ) | 
						
							| 78 |  | simp13 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> a = ( B \ s ) ) | 
						
							| 79 | 77 78 | sseq12d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( b C_ a <-> ( B \ t ) C_ ( B \ s ) ) ) | 
						
							| 80 | 77 | fveq2d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` b ) = ( I ` ( B \ t ) ) ) | 
						
							| 81 | 78 | fveq2d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( I ` a ) = ( I ` ( B \ s ) ) ) | 
						
							| 82 | 80 81 | sseq12d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( I ` b ) C_ ( I ` a ) <-> ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) ) ) | 
						
							| 83 | 79 82 | imbi12d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> ( ( B \ t ) C_ ( B \ s ) -> ( I ` ( B \ t ) ) C_ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 84 | 1 2 3 | ntrclsfv1 |  |-  ( ph -> ( D ` I ) = K ) | 
						
							| 85 | 60 84 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( D ` I ) = K ) | 
						
							| 86 | 85 | fveq1d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( D ` I ) ` s ) = ( K ` s ) ) | 
						
							| 87 |  | eqid |  |-  ( D ` I ) = ( D ` I ) | 
						
							| 88 |  | eqid |  |-  ( ( D ` I ) ` s ) = ( ( D ` I ) ` s ) | 
						
							| 89 | 1 2 65 62 87 53 88 | dssmapfv3d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( D ` I ) ` s ) = ( B \ ( I ` ( B \ s ) ) ) ) | 
						
							| 90 | 86 89 | eqtr3d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( K ` s ) = ( B \ ( I ` ( B \ s ) ) ) ) | 
						
							| 91 | 60 3 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> I D K ) | 
						
							| 92 | 1 2 91 | ntrclsfv1 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( D ` I ) = K ) | 
						
							| 93 | 92 | fveq1d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( D ` I ) ` t ) = ( K ` t ) ) | 
						
							| 94 |  | eqid |  |-  ( ( D ` I ) ` t ) = ( ( D ` I ) ` t ) | 
						
							| 95 | 1 2 65 62 87 55 94 | dssmapfv3d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( D ` I ) ` t ) = ( B \ ( I ` ( B \ t ) ) ) ) | 
						
							| 96 | 93 95 | eqtr3d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( K ` t ) = ( B \ ( I ` ( B \ t ) ) ) ) | 
						
							| 97 | 90 96 | sseq12d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( K ` s ) C_ ( K ` t ) <-> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) | 
						
							| 98 | 97 | imbi2d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) <-> ( s C_ t -> ( B \ ( I ` ( B \ s ) ) ) C_ ( B \ ( I ` ( B \ t ) ) ) ) ) ) | 
						
							| 99 | 76 83 98 | 3bitr4d |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) ) ) | 
						
							| 100 | 37 52 99 | ralxfrd2 |  |-  ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) -> ( A. b e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> A. t e. ~P B ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) ) ) | 
						
							| 101 | 19 33 100 | ralxfrd2 |  |-  ( ph -> ( A. a e. ~P B A. b e. ~P B ( b C_ a -> ( I ` b ) C_ ( I ` a ) ) <-> A. s e. ~P B A. t e. ~P B ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) ) ) | 
						
							| 102 | 14 101 | bitrid |  |-  ( ph -> ( A. s e. ~P B A. t e. ~P B ( s C_ t -> ( I ` s ) C_ ( I ` t ) ) <-> A. s e. ~P B A. t e. ~P B ( s C_ t -> ( K ` s ) C_ ( K ` t ) ) ) ) |