| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 |  | fveq2 |  |-  ( s = t -> ( I ` s ) = ( I ` t ) ) | 
						
							| 5 |  | id |  |-  ( s = t -> s = t ) | 
						
							| 6 | 4 5 | sseq12d |  |-  ( s = t -> ( ( I ` s ) C_ s <-> ( I ` t ) C_ t ) ) | 
						
							| 7 | 6 | cbvralvw |  |-  ( A. s e. ~P B ( I ` s ) C_ s <-> A. t e. ~P B ( I ` t ) C_ t ) | 
						
							| 8 | 2 3 | ntrclsrcomplex |  |-  ( ph -> ( B \ s ) e. ~P B ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> ( B \ s ) e. ~P B ) | 
						
							| 10 | 2 3 | ntrclsrcomplex |  |-  ( ph -> ( B \ t ) e. ~P B ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) | 
						
							| 12 |  | difeq2 |  |-  ( s = ( B \ t ) -> ( B \ s ) = ( B \ ( B \ t ) ) ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( s = ( B \ t ) -> ( t = ( B \ s ) <-> t = ( B \ ( B \ t ) ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ph /\ t e. ~P B ) /\ s = ( B \ t ) ) -> ( t = ( B \ s ) <-> t = ( B \ ( B \ t ) ) ) ) | 
						
							| 15 |  | elpwi |  |-  ( t e. ~P B -> t C_ B ) | 
						
							| 16 |  | dfss4 |  |-  ( t C_ B <-> ( B \ ( B \ t ) ) = t ) | 
						
							| 17 | 15 16 | sylib |  |-  ( t e. ~P B -> ( B \ ( B \ t ) ) = t ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ t e. ~P B ) -> ( B \ ( B \ t ) ) = t ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( ph /\ t e. ~P B ) -> t = ( B \ ( B \ t ) ) ) | 
						
							| 20 | 11 14 19 | rspcedvd |  |-  ( ( ph /\ t e. ~P B ) -> E. s e. ~P B t = ( B \ s ) ) | 
						
							| 21 |  | fveq2 |  |-  ( t = ( B \ s ) -> ( I ` t ) = ( I ` ( B \ s ) ) ) | 
						
							| 22 |  | id |  |-  ( t = ( B \ s ) -> t = ( B \ s ) ) | 
						
							| 23 | 21 22 | sseq12d |  |-  ( t = ( B \ s ) -> ( ( I ` t ) C_ t <-> ( I ` ( B \ s ) ) C_ ( B \ s ) ) ) | 
						
							| 24 | 23 | 3ad2ant3 |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` t ) C_ t <-> ( I ` ( B \ s ) ) C_ ( B \ s ) ) ) | 
						
							| 25 | 1 2 3 | ntrclsiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 26 |  | elmapi |  |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> I : ~P B --> ~P B ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> I : ~P B --> ~P B ) | 
						
							| 29 | 8 | 3ad2ant1 |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( B \ s ) e. ~P B ) | 
						
							| 30 | 28 29 | ffvelcdmd |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( I ` ( B \ s ) ) e. ~P B ) | 
						
							| 31 | 30 | elpwid |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( I ` ( B \ s ) ) C_ B ) | 
						
							| 32 |  | difssd |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( B \ s ) C_ B ) | 
						
							| 33 |  | sscon34b |  |-  ( ( ( I ` ( B \ s ) ) C_ B /\ ( B \ s ) C_ B ) -> ( ( I ` ( B \ s ) ) C_ ( B \ s ) <-> ( B \ ( B \ s ) ) C_ ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 34 | 31 32 33 | syl2anc |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( B \ s ) ) C_ ( B \ s ) <-> ( B \ ( B \ s ) ) C_ ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 35 |  | simp2 |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> s e. ~P B ) | 
						
							| 36 |  | elpwi |  |-  ( s e. ~P B -> s C_ B ) | 
						
							| 37 |  | dfss4 |  |-  ( s C_ B <-> ( B \ ( B \ s ) ) = s ) | 
						
							| 38 | 36 37 | sylib |  |-  ( s e. ~P B -> ( B \ ( B \ s ) ) = s ) | 
						
							| 39 | 38 | sseq1d |  |-  ( s e. ~P B -> ( ( B \ ( B \ s ) ) C_ ( B \ ( I ` ( B \ s ) ) ) <-> s C_ ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 40 | 35 39 | syl |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( B \ ( B \ s ) ) C_ ( B \ ( I ` ( B \ s ) ) ) <-> s C_ ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 41 | 34 40 | bitrd |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( B \ s ) ) C_ ( B \ s ) <-> s C_ ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 42 | 2 3 | ntrclsbex |  |-  ( ph -> B e. _V ) | 
						
							| 43 | 42 | 3ad2ant1 |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> B e. _V ) | 
						
							| 44 | 25 | 3ad2ant1 |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 45 |  | eqid |  |-  ( D ` I ) = ( D ` I ) | 
						
							| 46 |  | eqid |  |-  ( ( D ` I ) ` s ) = ( ( D ` I ) ` s ) | 
						
							| 47 | 1 2 43 44 45 35 46 | dssmapfv3d |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( D ` I ) ` s ) = ( B \ ( I ` ( B \ s ) ) ) ) | 
						
							| 48 | 47 | sseq2d |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( s C_ ( ( D ` I ) ` s ) <-> s C_ ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 49 | 1 2 3 | ntrclsfv1 |  |-  ( ph -> ( D ` I ) = K ) | 
						
							| 50 | 49 | fveq1d |  |-  ( ph -> ( ( D ` I ) ` s ) = ( K ` s ) ) | 
						
							| 51 | 50 | sseq2d |  |-  ( ph -> ( s C_ ( ( D ` I ) ` s ) <-> s C_ ( K ` s ) ) ) | 
						
							| 52 | 51 | 3ad2ant1 |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( s C_ ( ( D ` I ) ` s ) <-> s C_ ( K ` s ) ) ) | 
						
							| 53 | 41 48 52 | 3bitr2d |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( B \ s ) ) C_ ( B \ s ) <-> s C_ ( K ` s ) ) ) | 
						
							| 54 | 24 53 | bitrd |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` t ) C_ t <-> s C_ ( K ` s ) ) ) | 
						
							| 55 | 9 20 54 | ralxfrd2 |  |-  ( ph -> ( A. t e. ~P B ( I ` t ) C_ t <-> A. s e. ~P B s C_ ( K ` s ) ) ) | 
						
							| 56 | 7 55 | bitrid |  |-  ( ph -> ( A. s e. ~P B ( I ` s ) C_ s <-> A. s e. ~P B s C_ ( K ` s ) ) ) |