Metamath Proof Explorer


Theorem ntrclsk2

Description: An interior function is contracting if and only if the closure function is expansive. (Contributed by RP, 9-Jun-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
Assertion ntrclsk2
|- ( ph -> ( A. s e. ~P B ( I ` s ) C_ s <-> A. s e. ~P B s C_ ( K ` s ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 fveq2
 |-  ( s = t -> ( I ` s ) = ( I ` t ) )
5 id
 |-  ( s = t -> s = t )
6 4 5 sseq12d
 |-  ( s = t -> ( ( I ` s ) C_ s <-> ( I ` t ) C_ t ) )
7 6 cbvralvw
 |-  ( A. s e. ~P B ( I ` s ) C_ s <-> A. t e. ~P B ( I ` t ) C_ t )
8 2 3 ntrclsrcomplex
 |-  ( ph -> ( B \ s ) e. ~P B )
9 8 adantr
 |-  ( ( ph /\ s e. ~P B ) -> ( B \ s ) e. ~P B )
10 2 3 ntrclsrcomplex
 |-  ( ph -> ( B \ t ) e. ~P B )
11 10 adantr
 |-  ( ( ph /\ t e. ~P B ) -> ( B \ t ) e. ~P B )
12 difeq2
 |-  ( s = ( B \ t ) -> ( B \ s ) = ( B \ ( B \ t ) ) )
13 12 eqeq2d
 |-  ( s = ( B \ t ) -> ( t = ( B \ s ) <-> t = ( B \ ( B \ t ) ) ) )
14 13 adantl
 |-  ( ( ( ph /\ t e. ~P B ) /\ s = ( B \ t ) ) -> ( t = ( B \ s ) <-> t = ( B \ ( B \ t ) ) ) )
15 elpwi
 |-  ( t e. ~P B -> t C_ B )
16 dfss4
 |-  ( t C_ B <-> ( B \ ( B \ t ) ) = t )
17 15 16 sylib
 |-  ( t e. ~P B -> ( B \ ( B \ t ) ) = t )
18 17 adantl
 |-  ( ( ph /\ t e. ~P B ) -> ( B \ ( B \ t ) ) = t )
19 18 eqcomd
 |-  ( ( ph /\ t e. ~P B ) -> t = ( B \ ( B \ t ) ) )
20 11 14 19 rspcedvd
 |-  ( ( ph /\ t e. ~P B ) -> E. s e. ~P B t = ( B \ s ) )
21 fveq2
 |-  ( t = ( B \ s ) -> ( I ` t ) = ( I ` ( B \ s ) ) )
22 id
 |-  ( t = ( B \ s ) -> t = ( B \ s ) )
23 21 22 sseq12d
 |-  ( t = ( B \ s ) -> ( ( I ` t ) C_ t <-> ( I ` ( B \ s ) ) C_ ( B \ s ) ) )
24 23 3ad2ant3
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` t ) C_ t <-> ( I ` ( B \ s ) ) C_ ( B \ s ) ) )
25 1 2 3 ntrclsiex
 |-  ( ph -> I e. ( ~P B ^m ~P B ) )
26 elmapi
 |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B )
27 25 26 syl
 |-  ( ph -> I : ~P B --> ~P B )
28 27 3ad2ant1
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> I : ~P B --> ~P B )
29 8 3ad2ant1
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( B \ s ) e. ~P B )
30 28 29 ffvelrnd
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( I ` ( B \ s ) ) e. ~P B )
31 30 elpwid
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( I ` ( B \ s ) ) C_ B )
32 difssd
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( B \ s ) C_ B )
33 sscon34b
 |-  ( ( ( I ` ( B \ s ) ) C_ B /\ ( B \ s ) C_ B ) -> ( ( I ` ( B \ s ) ) C_ ( B \ s ) <-> ( B \ ( B \ s ) ) C_ ( B \ ( I ` ( B \ s ) ) ) ) )
34 31 32 33 syl2anc
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( B \ s ) ) C_ ( B \ s ) <-> ( B \ ( B \ s ) ) C_ ( B \ ( I ` ( B \ s ) ) ) ) )
35 simp2
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> s e. ~P B )
36 elpwi
 |-  ( s e. ~P B -> s C_ B )
37 dfss4
 |-  ( s C_ B <-> ( B \ ( B \ s ) ) = s )
38 36 37 sylib
 |-  ( s e. ~P B -> ( B \ ( B \ s ) ) = s )
39 38 sseq1d
 |-  ( s e. ~P B -> ( ( B \ ( B \ s ) ) C_ ( B \ ( I ` ( B \ s ) ) ) <-> s C_ ( B \ ( I ` ( B \ s ) ) ) ) )
40 35 39 syl
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( B \ ( B \ s ) ) C_ ( B \ ( I ` ( B \ s ) ) ) <-> s C_ ( B \ ( I ` ( B \ s ) ) ) ) )
41 34 40 bitrd
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( B \ s ) ) C_ ( B \ s ) <-> s C_ ( B \ ( I ` ( B \ s ) ) ) ) )
42 2 3 ntrclsbex
 |-  ( ph -> B e. _V )
43 42 3ad2ant1
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> B e. _V )
44 25 3ad2ant1
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> I e. ( ~P B ^m ~P B ) )
45 eqid
 |-  ( D ` I ) = ( D ` I )
46 eqid
 |-  ( ( D ` I ) ` s ) = ( ( D ` I ) ` s )
47 1 2 43 44 45 35 46 dssmapfv3d
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( D ` I ) ` s ) = ( B \ ( I ` ( B \ s ) ) ) )
48 47 sseq2d
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( s C_ ( ( D ` I ) ` s ) <-> s C_ ( B \ ( I ` ( B \ s ) ) ) ) )
49 1 2 3 ntrclsfv1
 |-  ( ph -> ( D ` I ) = K )
50 49 fveq1d
 |-  ( ph -> ( ( D ` I ) ` s ) = ( K ` s ) )
51 50 sseq2d
 |-  ( ph -> ( s C_ ( ( D ` I ) ` s ) <-> s C_ ( K ` s ) ) )
52 51 3ad2ant1
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( s C_ ( ( D ` I ) ` s ) <-> s C_ ( K ` s ) ) )
53 41 48 52 3bitr2d
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( B \ s ) ) C_ ( B \ s ) <-> s C_ ( K ` s ) ) )
54 24 53 bitrd
 |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` t ) C_ t <-> s C_ ( K ` s ) ) )
55 9 20 54 ralxfrd2
 |-  ( ph -> ( A. t e. ~P B ( I ` t ) C_ t <-> A. s e. ~P B s C_ ( K ` s ) ) )
56 7 55 syl5bb
 |-  ( ph -> ( A. s e. ~P B ( I ` s ) C_ s <-> A. s e. ~P B s C_ ( K ` s ) ) )