Metamath Proof Explorer


Theorem ntrclsk2

Description: An interior function is contracting if and only if the closure function is expansive. (Contributed by RP, 9-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
ntrcls.d D=OB
ntrcls.r φIDK
Assertion ntrclsk2 φs𝒫BIsss𝒫BsKs

Proof

Step Hyp Ref Expression
1 ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
2 ntrcls.d D=OB
3 ntrcls.r φIDK
4 fveq2 s=tIs=It
5 id s=ts=t
6 4 5 sseq12d s=tIssItt
7 6 cbvralvw s𝒫BIsst𝒫BItt
8 2 3 ntrclsrcomplex φBs𝒫B
9 8 adantr φs𝒫BBs𝒫B
10 2 3 ntrclsrcomplex φBt𝒫B
11 10 adantr φt𝒫BBt𝒫B
12 difeq2 s=BtBs=BBt
13 12 eqeq2d s=Btt=Bst=BBt
14 13 adantl φt𝒫Bs=Btt=Bst=BBt
15 elpwi t𝒫BtB
16 dfss4 tBBBt=t
17 15 16 sylib t𝒫BBBt=t
18 17 adantl φt𝒫BBBt=t
19 18 eqcomd φt𝒫Bt=BBt
20 11 14 19 rspcedvd φt𝒫Bs𝒫Bt=Bs
21 fveq2 t=BsIt=IBs
22 id t=Bst=Bs
23 21 22 sseq12d t=BsIttIBsBs
24 23 3ad2ant3 φs𝒫Bt=BsIttIBsBs
25 1 2 3 ntrclsiex φI𝒫B𝒫B
26 elmapi I𝒫B𝒫BI:𝒫B𝒫B
27 25 26 syl φI:𝒫B𝒫B
28 27 3ad2ant1 φs𝒫Bt=BsI:𝒫B𝒫B
29 8 3ad2ant1 φs𝒫Bt=BsBs𝒫B
30 28 29 ffvelcdmd φs𝒫Bt=BsIBs𝒫B
31 30 elpwid φs𝒫Bt=BsIBsB
32 difssd φs𝒫Bt=BsBsB
33 sscon34b IBsBBsBIBsBsBBsBIBs
34 31 32 33 syl2anc φs𝒫Bt=BsIBsBsBBsBIBs
35 simp2 φs𝒫Bt=Bss𝒫B
36 elpwi s𝒫BsB
37 dfss4 sBBBs=s
38 36 37 sylib s𝒫BBBs=s
39 38 sseq1d s𝒫BBBsBIBssBIBs
40 35 39 syl φs𝒫Bt=BsBBsBIBssBIBs
41 34 40 bitrd φs𝒫Bt=BsIBsBssBIBs
42 2 3 ntrclsbex φBV
43 42 3ad2ant1 φs𝒫Bt=BsBV
44 25 3ad2ant1 φs𝒫Bt=BsI𝒫B𝒫B
45 eqid DI=DI
46 eqid DIs=DIs
47 1 2 43 44 45 35 46 dssmapfv3d φs𝒫Bt=BsDIs=BIBs
48 47 sseq2d φs𝒫Bt=BssDIssBIBs
49 1 2 3 ntrclsfv1 φDI=K
50 49 fveq1d φDIs=Ks
51 50 sseq2d φsDIssKs
52 51 3ad2ant1 φs𝒫Bt=BssDIssKs
53 41 48 52 3bitr2d φs𝒫Bt=BsIBsBssKs
54 24 53 bitrd φs𝒫Bt=BsIttsKs
55 9 20 54 ralxfrd2 φt𝒫BItts𝒫BsKs
56 7 55 bitrid φs𝒫BIsss𝒫BsKs