| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
| 3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
| 4 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑡 ) ) |
| 5 |
|
id |
⊢ ( 𝑠 = 𝑡 → 𝑠 = 𝑡 ) |
| 6 |
4 5
|
sseq12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ↔ ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) ) |
| 7 |
6
|
cbvralvw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ) |
| 8 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 10 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 12 |
|
difeq2 |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑡 ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) |
| 13 |
12
|
eqeq2d |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑡 ) → ( 𝑡 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑡 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝑡 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑡 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 15 |
|
elpwi |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵 ) |
| 16 |
|
dfss4 |
⊢ ( 𝑡 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
| 17 |
15 16
|
sylib |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
| 19 |
18
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑡 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) |
| 20 |
11 14 19
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑡 = ( 𝐵 ∖ 𝑠 ) ) |
| 21 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
| 22 |
|
id |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑠 ) → 𝑡 = ( 𝐵 ∖ 𝑠 ) ) |
| 23 |
21 22
|
sseq12d |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑠 ) → ( ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ↔ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ 𝑠 ) ) ) |
| 24 |
23
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ↔ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ 𝑠 ) ) ) |
| 25 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 26 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 29 |
8
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 30 |
28 29
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∈ 𝒫 𝐵 ) |
| 31 |
30
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) |
| 32 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
| 33 |
|
sscon34b |
⊢ ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ∧ ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 34 |
31 32 33
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 35 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 36 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → 𝑠 ⊆ 𝐵 ) |
| 37 |
|
dfss4 |
⊢ ( 𝑠 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑠 ) ) = 𝑠 ) |
| 38 |
36 37
|
sylib |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑠 ) ) = 𝑠 ) |
| 39 |
38
|
sseq1d |
⊢ ( 𝑠 ∈ 𝒫 𝐵 → ( ( 𝐵 ∖ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ↔ 𝑠 ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 40 |
35 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐵 ∖ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ↔ 𝑠 ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 41 |
34 40
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ 𝑠 ) ↔ 𝑠 ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 42 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 43 |
42
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → 𝐵 ∈ V ) |
| 44 |
25
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 45 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐼 ) = ( 𝐷 ‘ 𝐼 ) |
| 46 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) |
| 47 |
1 2 43 44 45 35 46
|
dssmapfv3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 48 |
47
|
sseq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( 𝑠 ⊆ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ↔ 𝑠 ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 49 |
1 2 3
|
ntrclsfv1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
| 50 |
49
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐾 ‘ 𝑠 ) ) |
| 51 |
50
|
sseq2d |
⊢ ( 𝜑 → ( 𝑠 ⊆ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ↔ 𝑠 ⊆ ( 𝐾 ‘ 𝑠 ) ) ) |
| 52 |
51
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( 𝑠 ⊆ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ↔ 𝑠 ⊆ ( 𝐾 ‘ 𝑠 ) ) ) |
| 53 |
41 48 52
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ ( 𝐵 ∖ 𝑠 ) ↔ 𝑠 ⊆ ( 𝐾 ‘ 𝑠 ) ) ) |
| 54 |
24 53
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ↔ 𝑠 ⊆ ( 𝐾 ‘ 𝑠 ) ) ) |
| 55 |
9 20 54
|
ralxfrd2 |
⊢ ( 𝜑 → ( ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑡 ) ⊆ 𝑡 ↔ ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ⊆ ( 𝐾 ‘ 𝑠 ) ) ) |
| 56 |
7 55
|
bitrid |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ 𝑠 ) ⊆ 𝑠 ↔ ∀ 𝑠 ∈ 𝒫 𝐵 𝑠 ⊆ ( 𝐾 ‘ 𝑠 ) ) ) |