| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o | ⊢ 𝑂  =  ( 𝑖  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑖  ↑m  𝒫  𝑖 )  ↦  ( 𝑗  ∈  𝒫  𝑖  ↦  ( 𝑖  ∖  ( 𝑘 ‘ ( 𝑖  ∖  𝑗 ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d | ⊢ 𝐷  =  ( 𝑂 ‘ 𝐵 ) | 
						
							| 3 |  | ntrcls.r | ⊢ ( 𝜑  →  𝐼 𝐷 𝐾 ) | 
						
							| 4 |  | ineq1 | ⊢ ( 𝑠  =  𝑎  →  ( 𝑠  ∩  𝑡 )  =  ( 𝑎  ∩  𝑡 ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( 𝑠  =  𝑎  →  ( ( 𝑠  ∩  𝑡 )  =  ∅  ↔  ( 𝑎  ∩  𝑡 )  =  ∅ ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑠  =  𝑎  →  ( 𝐼 ‘ 𝑠 )  =  ( 𝐼 ‘ 𝑎 ) ) | 
						
							| 7 | 6 | ineq1d | ⊢ ( 𝑠  =  𝑎  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑠  =  𝑎  →  ( ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅  ↔  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) | 
						
							| 9 | 5 8 | imbi12d | ⊢ ( 𝑠  =  𝑎  →  ( ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ )  ↔  ( ( 𝑎  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ ) ) ) | 
						
							| 10 |  | ineq2 | ⊢ ( 𝑡  =  𝑏  →  ( 𝑎  ∩  𝑡 )  =  ( 𝑎  ∩  𝑏 ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑡  =  𝑏  →  ( ( 𝑎  ∩  𝑡 )  =  ∅  ↔  ( 𝑎  ∩  𝑏 )  =  ∅ ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑡  =  𝑏  →  ( 𝐼 ‘ 𝑡 )  =  ( 𝐼 ‘ 𝑏 ) ) | 
						
							| 13 | 12 | ineq2d | ⊢ ( 𝑡  =  𝑏  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) ) ) | 
						
							| 14 | 13 | eqeq1d | ⊢ ( 𝑡  =  𝑏  →  ( ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅  ↔  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ ) ) | 
						
							| 15 | 11 14 | imbi12d | ⊢ ( 𝑡  =  𝑏  →  ( ( ( 𝑎  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ )  ↔  ( ( 𝑎  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ ) ) ) | 
						
							| 16 | 9 15 | cbvral2vw | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ )  ↔  ∀ 𝑎  ∈  𝒫  𝐵 ∀ 𝑏  ∈  𝒫  𝐵 ( ( 𝑎  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ ) ) | 
						
							| 17 | 2 3 | ntrclsrcomplex | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 19 | 2 3 | ntrclsrcomplex | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑎 )  ∈  𝒫  𝐵 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑎 )  ∈  𝒫  𝐵 ) | 
						
							| 21 |  | difeq2 | ⊢ ( 𝑠  =  ( 𝐵  ∖  𝑎 )  →  ( 𝐵  ∖  𝑠 )  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) ) ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝑠  =  ( 𝐵  ∖  𝑎 )  →  ( 𝑎  =  ( 𝐵  ∖  𝑠 )  ↔  𝑎  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) ) ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝐵 )  ∧  𝑠  =  ( 𝐵  ∖  𝑎 ) )  →  ( 𝑎  =  ( 𝐵  ∖  𝑠 )  ↔  𝑎  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) ) ) ) | 
						
							| 24 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  𝐵  →  𝑎  ⊆  𝐵 ) | 
						
							| 25 |  | dfss4 | ⊢ ( 𝑎  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 26 | 24 25 | sylib | ⊢ ( 𝑎  ∈  𝒫  𝐵  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 27 | 26 | eqcomd | ⊢ ( 𝑎  ∈  𝒫  𝐵  →  𝑎  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝐵 )  →  𝑎  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) ) ) | 
						
							| 29 | 20 23 28 | rspcedvd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝐵 )  →  ∃ 𝑠  ∈  𝒫  𝐵 𝑎  =  ( 𝐵  ∖  𝑠 ) ) | 
						
							| 30 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝜑 ) | 
						
							| 31 | 2 3 | ntrclsrcomplex | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑡 )  ∈  𝒫  𝐵 ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑡 )  ∈  𝒫  𝐵 ) | 
						
							| 33 | 2 3 | ntrclsrcomplex | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑏 )  ∈  𝒫  𝐵 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑏 )  ∈  𝒫  𝐵 ) | 
						
							| 35 |  | difeq2 | ⊢ ( 𝑡  =  ( 𝐵  ∖  𝑏 )  →  ( 𝐵  ∖  𝑡 )  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) ) ) | 
						
							| 36 | 35 | eqeq2d | ⊢ ( 𝑡  =  ( 𝐵  ∖  𝑏 )  →  ( 𝑏  =  ( 𝐵  ∖  𝑡 )  ↔  𝑏  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑏  ∈  𝒫  𝐵 )  ∧  𝑡  =  ( 𝐵  ∖  𝑏 ) )  →  ( 𝑏  =  ( 𝐵  ∖  𝑡 )  ↔  𝑏  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) ) ) ) | 
						
							| 38 |  | elpwi | ⊢ ( 𝑏  ∈  𝒫  𝐵  →  𝑏  ⊆  𝐵 ) | 
						
							| 39 |  | dfss4 | ⊢ ( 𝑏  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 40 | 38 39 | sylib | ⊢ ( 𝑏  ∈  𝒫  𝐵  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( 𝑏  ∈  𝒫  𝐵  →  𝑏  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝒫  𝐵 )  →  𝑏  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) ) ) | 
						
							| 43 | 34 37 42 | rspcedvd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝒫  𝐵 )  →  ∃ 𝑡  ∈  𝒫  𝐵 𝑏  =  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 44 | 43 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑏  ∈  𝒫  𝐵 )  →  ∃ 𝑡  ∈  𝒫  𝐵 𝑏  =  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 45 |  | simp13 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑎  =  ( 𝐵  ∖  𝑠 ) ) | 
						
							| 46 |  | ineq1 | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( 𝑎  ∩  𝑏 )  =  ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) ) | 
						
							| 47 | 46 | eqeq1d | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( ( 𝑎  ∩  𝑏 )  =  ∅  ↔  ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 )  =  ∅ ) ) | 
						
							| 48 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( 𝐼 ‘ 𝑎 )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 49 | 48 | ineq1d | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) ) ) | 
						
							| 50 | 49 | eqeq1d | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅  ↔  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ ) ) | 
						
							| 51 | 47 50 | imbi12d | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( ( ( 𝑎  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ )  ↔  ( ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ ) ) ) | 
						
							| 52 | 45 51 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( ( 𝑎  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ )  ↔  ( ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ ) ) ) | 
						
							| 53 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑏  =  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 54 |  | ineq2 | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 )  =  ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) ) ) | 
						
							| 55 | 54 | eqeq1d | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 )  =  ∅  ↔  ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) )  =  ∅ ) ) | 
						
							| 56 |  | fveq2 | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( 𝐼 ‘ 𝑏 )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) | 
						
							| 57 | 56 | ineq2d | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 58 | 57 | eqeq1d | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅  ↔  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  =  ∅ ) ) | 
						
							| 59 | 55 58 | imbi12d | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( ( ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ )  ↔  ( ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) )  =  ∅  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  =  ∅ ) ) ) | 
						
							| 60 | 53 59 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ )  ↔  ( ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) )  =  ∅  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  =  ∅ ) ) ) | 
						
							| 61 |  | simp11 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝜑 ) | 
						
							| 62 |  | simp12 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 63 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑡  ∈  𝒫  𝐵 ) | 
						
							| 64 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 65 | 64 | elpwid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝑠  ⊆  𝐵 ) | 
						
							| 66 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝑡  ∈  𝒫  𝐵 ) | 
						
							| 67 | 66 | elpwid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝑡  ⊆  𝐵 ) | 
						
							| 68 | 65 67 | unssd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝑠  ∪  𝑡 )  ⊆  𝐵 ) | 
						
							| 69 |  | ssid | ⊢ 𝐵  ⊆  𝐵 | 
						
							| 70 |  | rcompleq | ⊢ ( ( ( 𝑠  ∪  𝑡 )  ⊆  𝐵  ∧  𝐵  ⊆  𝐵 )  →  ( ( 𝑠  ∪  𝑡 )  =  𝐵  ↔  ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) )  =  ( 𝐵  ∖  𝐵 ) ) ) | 
						
							| 71 | 68 69 70 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝑠  ∪  𝑡 )  =  𝐵  ↔  ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) )  =  ( 𝐵  ∖  𝐵 ) ) ) | 
						
							| 72 |  | difundi | ⊢ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 73 |  | difid | ⊢ ( 𝐵  ∖  𝐵 )  =  ∅ | 
						
							| 74 | 72 73 | eqeq12i | ⊢ ( ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) )  =  ( 𝐵  ∖  𝐵 )  ↔  ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) )  =  ∅ ) | 
						
							| 75 | 71 74 | bitr2di | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) )  =  ∅  ↔  ( 𝑠  ∪  𝑡 )  =  𝐵 ) ) | 
						
							| 76 | 1 2 3 | ntrclsiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 77 | 76 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 78 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 79 | 77 78 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 80 | 2 3 | ntrclsbex | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 81 | 80 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 82 |  | difssd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑠 )  ⊆  𝐵 ) | 
						
							| 83 | 81 82 | sselpwd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 84 | 79 83 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∈  𝒫  𝐵 ) | 
						
							| 85 | 84 | elpwid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ⊆  𝐵 ) | 
						
							| 86 |  | ssinss1 | ⊢ ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ⊆  𝐵  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ⊆  𝐵 ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ⊆  𝐵 ) | 
						
							| 88 |  | 0ss | ⊢ ∅  ⊆  𝐵 | 
						
							| 89 |  | rcompleq | ⊢ ( ( ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ⊆  𝐵  ∧  ∅  ⊆  𝐵 )  →  ( ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  =  ∅  ↔  ( 𝐵  ∖  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  ( 𝐵  ∖  ∅ ) ) ) | 
						
							| 90 | 87 88 89 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  =  ∅  ↔  ( 𝐵  ∖  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  ( 𝐵  ∖  ∅ ) ) ) | 
						
							| 91 |  | difindi | ⊢ ( 𝐵  ∖  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 92 |  | dif0 | ⊢ ( 𝐵  ∖  ∅ )  =  𝐵 | 
						
							| 93 | 91 92 | eqeq12i | ⊢ ( ( 𝐵  ∖  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  ( 𝐵  ∖  ∅ )  ↔  ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  𝐵 ) | 
						
							| 94 | 90 93 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  =  ∅  ↔  ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  𝐵 ) ) | 
						
							| 95 | 75 94 | imbi12d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) )  =  ∅  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  =  ∅ )  ↔  ( ( 𝑠  ∪  𝑡 )  =  𝐵  →  ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  𝐵 ) ) ) | 
						
							| 96 |  | eqid | ⊢ ( 𝐷 ‘ 𝐼 )  =  ( 𝐷 ‘ 𝐼 ) | 
						
							| 97 |  | eqid | ⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) | 
						
							| 98 | 1 2 81 77 96 64 97 | dssmapfv3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 99 |  | eqid | ⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) | 
						
							| 100 | 1 2 81 77 96 66 99 | dssmapfv3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 101 | 98 100 | uneq12d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  ∪  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) )  =  ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) | 
						
							| 102 | 1 2 3 | ntrclsfv1 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐼 )  =  𝐾 ) | 
						
							| 103 | 102 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐷 ‘ 𝐼 )  =  𝐾 ) | 
						
							| 104 |  | fveq1 | ⊢ ( ( 𝐷 ‘ 𝐼 )  =  𝐾  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( 𝐾 ‘ 𝑠 ) ) | 
						
							| 105 |  | fveq1 | ⊢ ( ( 𝐷 ‘ 𝐼 )  =  𝐾  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( 𝐾 ‘ 𝑡 ) ) | 
						
							| 106 | 104 105 | uneq12d | ⊢ ( ( 𝐷 ‘ 𝐼 )  =  𝐾  →  ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  ∪  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) | 
						
							| 107 | 103 106 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  ∪  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) | 
						
							| 108 | 101 107 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) | 
						
							| 109 | 108 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  𝐵  ↔  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) )  =  𝐵 ) ) | 
						
							| 110 | 109 | imbi2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( ( 𝑠  ∪  𝑡 )  =  𝐵  →  ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  𝐵 )  ↔  ( ( 𝑠  ∪  𝑡 )  =  𝐵  →  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) )  =  𝐵 ) ) ) | 
						
							| 111 | 95 110 | bitrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) )  =  ∅  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  =  ∅ )  ↔  ( ( 𝑠  ∪  𝑡 )  =  𝐵  →  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) )  =  𝐵 ) ) ) | 
						
							| 112 | 61 62 63 111 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) )  =  ∅  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  =  ∅ )  ↔  ( ( 𝑠  ∪  𝑡 )  =  𝐵  →  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) )  =  𝐵 ) ) ) | 
						
							| 113 | 52 60 112 | 3bitrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( ( 𝑎  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ )  ↔  ( ( 𝑠  ∪  𝑡 )  =  𝐵  →  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) )  =  𝐵 ) ) ) | 
						
							| 114 | 32 44 113 | ralxfrd2 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  →  ( ∀ 𝑏  ∈  𝒫  𝐵 ( ( 𝑎  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ )  ↔  ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∪  𝑡 )  =  𝐵  →  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) )  =  𝐵 ) ) ) | 
						
							| 115 | 18 29 114 | ralxfrd2 | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝒫  𝐵 ∀ 𝑏  ∈  𝒫  𝐵 ( ( 𝑎  ∩  𝑏 )  =  ∅  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ∅ )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∪  𝑡 )  =  𝐵  →  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) )  =  𝐵 ) ) ) | 
						
							| 116 | 16 115 | bitrid | ⊢ ( 𝜑  →  ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∩  𝑡 )  =  ∅  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ∅ )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( ( 𝑠  ∪  𝑡 )  =  𝐵  →  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) )  =  𝐵 ) ) ) |