Metamath Proof Explorer


Theorem ntrclskb

Description: The interiors of disjoint sets are disjoint if and only if the closures of sets that span the base set also span the base set. (Contributed by RP, 10-Jun-2021)

Ref Expression
Hypotheses ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
ntrcls.d 𝐷 = ( 𝑂𝐵 )
ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
Assertion ntrclskb ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
2 ntrcls.d 𝐷 = ( 𝑂𝐵 )
3 ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
4 ineq1 ( 𝑠 = 𝑎 → ( 𝑠𝑡 ) = ( 𝑎𝑡 ) )
5 4 eqeq1d ( 𝑠 = 𝑎 → ( ( 𝑠𝑡 ) = ∅ ↔ ( 𝑎𝑡 ) = ∅ ) )
6 fveq2 ( 𝑠 = 𝑎 → ( 𝐼𝑠 ) = ( 𝐼𝑎 ) )
7 6 ineq1d ( 𝑠 = 𝑎 → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑡 ) ) )
8 7 eqeq1d ( 𝑠 = 𝑎 → ( ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ↔ ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) )
9 5 8 imbi12d ( 𝑠 = 𝑎 → ( ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ↔ ( ( 𝑎𝑡 ) = ∅ → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ) )
10 ineq2 ( 𝑡 = 𝑏 → ( 𝑎𝑡 ) = ( 𝑎𝑏 ) )
11 10 eqeq1d ( 𝑡 = 𝑏 → ( ( 𝑎𝑡 ) = ∅ ↔ ( 𝑎𝑏 ) = ∅ ) )
12 fveq2 ( 𝑡 = 𝑏 → ( 𝐼𝑡 ) = ( 𝐼𝑏 ) )
13 12 ineq2d ( 𝑡 = 𝑏 → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑡 ) ) = ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) )
14 13 eqeq1d ( 𝑡 = 𝑏 → ( ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑡 ) ) = ∅ ↔ ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ∅ ) )
15 11 14 imbi12d ( 𝑡 = 𝑏 → ( ( ( 𝑎𝑡 ) = ∅ → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ↔ ( ( 𝑎𝑏 ) = ∅ → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ) )
16 9 15 cbvral2vw ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ↔ ∀ 𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵 ( ( 𝑎𝑏 ) = ∅ → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ∅ ) )
17 2 3 ntrclsrcomplex ( 𝜑 → ( 𝐵𝑠 ) ∈ 𝒫 𝐵 )
18 17 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵𝑠 ) ∈ 𝒫 𝐵 )
19 2 3 ntrclsrcomplex ( 𝜑 → ( 𝐵𝑎 ) ∈ 𝒫 𝐵 )
20 19 adantr ( ( 𝜑𝑎 ∈ 𝒫 𝐵 ) → ( 𝐵𝑎 ) ∈ 𝒫 𝐵 )
21 difeq2 ( 𝑠 = ( 𝐵𝑎 ) → ( 𝐵𝑠 ) = ( 𝐵 ∖ ( 𝐵𝑎 ) ) )
22 21 eqeq2d ( 𝑠 = ( 𝐵𝑎 ) → ( 𝑎 = ( 𝐵𝑠 ) ↔ 𝑎 = ( 𝐵 ∖ ( 𝐵𝑎 ) ) ) )
23 22 adantl ( ( ( 𝜑𝑎 ∈ 𝒫 𝐵 ) ∧ 𝑠 = ( 𝐵𝑎 ) ) → ( 𝑎 = ( 𝐵𝑠 ) ↔ 𝑎 = ( 𝐵 ∖ ( 𝐵𝑎 ) ) ) )
24 elpwi ( 𝑎 ∈ 𝒫 𝐵𝑎𝐵 )
25 dfss4 ( 𝑎𝐵 ↔ ( 𝐵 ∖ ( 𝐵𝑎 ) ) = 𝑎 )
26 24 25 sylib ( 𝑎 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵𝑎 ) ) = 𝑎 )
27 26 eqcomd ( 𝑎 ∈ 𝒫 𝐵𝑎 = ( 𝐵 ∖ ( 𝐵𝑎 ) ) )
28 27 adantl ( ( 𝜑𝑎 ∈ 𝒫 𝐵 ) → 𝑎 = ( 𝐵 ∖ ( 𝐵𝑎 ) ) )
29 20 23 28 rspcedvd ( ( 𝜑𝑎 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵𝑠 ) )
30 simpl1 ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝜑 )
31 2 3 ntrclsrcomplex ( 𝜑 → ( 𝐵𝑡 ) ∈ 𝒫 𝐵 )
32 30 31 syl ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵𝑡 ) ∈ 𝒫 𝐵 )
33 2 3 ntrclsrcomplex ( 𝜑 → ( 𝐵𝑏 ) ∈ 𝒫 𝐵 )
34 33 adantr ( ( 𝜑𝑏 ∈ 𝒫 𝐵 ) → ( 𝐵𝑏 ) ∈ 𝒫 𝐵 )
35 difeq2 ( 𝑡 = ( 𝐵𝑏 ) → ( 𝐵𝑡 ) = ( 𝐵 ∖ ( 𝐵𝑏 ) ) )
36 35 eqeq2d ( 𝑡 = ( 𝐵𝑏 ) → ( 𝑏 = ( 𝐵𝑡 ) ↔ 𝑏 = ( 𝐵 ∖ ( 𝐵𝑏 ) ) ) )
37 36 adantl ( ( ( 𝜑𝑏 ∈ 𝒫 𝐵 ) ∧ 𝑡 = ( 𝐵𝑏 ) ) → ( 𝑏 = ( 𝐵𝑡 ) ↔ 𝑏 = ( 𝐵 ∖ ( 𝐵𝑏 ) ) ) )
38 elpwi ( 𝑏 ∈ 𝒫 𝐵𝑏𝐵 )
39 dfss4 ( 𝑏𝐵 ↔ ( 𝐵 ∖ ( 𝐵𝑏 ) ) = 𝑏 )
40 38 39 sylib ( 𝑏 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵𝑏 ) ) = 𝑏 )
41 40 eqcomd ( 𝑏 ∈ 𝒫 𝐵𝑏 = ( 𝐵 ∖ ( 𝐵𝑏 ) ) )
42 41 adantl ( ( 𝜑𝑏 ∈ 𝒫 𝐵 ) → 𝑏 = ( 𝐵 ∖ ( 𝐵𝑏 ) ) )
43 34 37 42 rspcedvd ( ( 𝜑𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵𝑡 ) )
44 43 3ad2antl1 ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵𝑡 ) )
45 simp13 ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = ( 𝐵𝑡 ) ) → 𝑎 = ( 𝐵𝑠 ) )
46 ineq1 ( 𝑎 = ( 𝐵𝑠 ) → ( 𝑎𝑏 ) = ( ( 𝐵𝑠 ) ∩ 𝑏 ) )
47 46 eqeq1d ( 𝑎 = ( 𝐵𝑠 ) → ( ( 𝑎𝑏 ) = ∅ ↔ ( ( 𝐵𝑠 ) ∩ 𝑏 ) = ∅ ) )
48 fveq2 ( 𝑎 = ( 𝐵𝑠 ) → ( 𝐼𝑎 ) = ( 𝐼 ‘ ( 𝐵𝑠 ) ) )
49 48 ineq1d ( 𝑎 = ( 𝐵𝑠 ) → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼𝑏 ) ) )
50 49 eqeq1d ( 𝑎 = ( 𝐵𝑠 ) → ( ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ∅ ↔ ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼𝑏 ) ) = ∅ ) )
51 47 50 imbi12d ( 𝑎 = ( 𝐵𝑠 ) → ( ( ( 𝑎𝑏 ) = ∅ → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ↔ ( ( ( 𝐵𝑠 ) ∩ 𝑏 ) = ∅ → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ) )
52 45 51 syl ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = ( 𝐵𝑡 ) ) → ( ( ( 𝑎𝑏 ) = ∅ → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ↔ ( ( ( 𝐵𝑠 ) ∩ 𝑏 ) = ∅ → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ) )
53 simp3 ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = ( 𝐵𝑡 ) ) → 𝑏 = ( 𝐵𝑡 ) )
54 ineq2 ( 𝑏 = ( 𝐵𝑡 ) → ( ( 𝐵𝑠 ) ∩ 𝑏 ) = ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) ) )
55 54 eqeq1d ( 𝑏 = ( 𝐵𝑡 ) → ( ( ( 𝐵𝑠 ) ∩ 𝑏 ) = ∅ ↔ ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) ) = ∅ ) )
56 fveq2 ( 𝑏 = ( 𝐵𝑡 ) → ( 𝐼𝑏 ) = ( 𝐼 ‘ ( 𝐵𝑡 ) ) )
57 56 ineq2d ( 𝑏 = ( 𝐵𝑡 ) → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) )
58 57 eqeq1d ( 𝑏 = ( 𝐵𝑡 ) → ( ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼𝑏 ) ) = ∅ ↔ ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) = ∅ ) )
59 55 58 imbi12d ( 𝑏 = ( 𝐵𝑡 ) → ( ( ( ( 𝐵𝑠 ) ∩ 𝑏 ) = ∅ → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ↔ ( ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) ) = ∅ → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) = ∅ ) ) )
60 53 59 syl ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = ( 𝐵𝑡 ) ) → ( ( ( ( 𝐵𝑠 ) ∩ 𝑏 ) = ∅ → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ↔ ( ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) ) = ∅ → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) = ∅ ) ) )
61 simp11 ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = ( 𝐵𝑡 ) ) → 𝜑 )
62 simp12 ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = ( 𝐵𝑡 ) ) → 𝑠 ∈ 𝒫 𝐵 )
63 simp2 ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = ( 𝐵𝑡 ) ) → 𝑡 ∈ 𝒫 𝐵 )
64 simp2 ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 )
65 64 elpwid ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → 𝑠𝐵 )
66 simp3 ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → 𝑡 ∈ 𝒫 𝐵 )
67 66 elpwid ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → 𝑡𝐵 )
68 65 67 unssd ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( 𝑠𝑡 ) ⊆ 𝐵 )
69 ssid 𝐵𝐵
70 rcompleq ( ( ( 𝑠𝑡 ) ⊆ 𝐵𝐵𝐵 ) → ( ( 𝑠𝑡 ) = 𝐵 ↔ ( 𝐵 ∖ ( 𝑠𝑡 ) ) = ( 𝐵𝐵 ) ) )
71 68 69 70 sylancl ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝑠𝑡 ) = 𝐵 ↔ ( 𝐵 ∖ ( 𝑠𝑡 ) ) = ( 𝐵𝐵 ) ) )
72 difundi ( 𝐵 ∖ ( 𝑠𝑡 ) ) = ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) )
73 difid ( 𝐵𝐵 ) = ∅
74 72 73 eqeq12i ( ( 𝐵 ∖ ( 𝑠𝑡 ) ) = ( 𝐵𝐵 ) ↔ ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) ) = ∅ )
75 71 74 bitr2di ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) ) = ∅ ↔ ( 𝑠𝑡 ) = 𝐵 ) )
76 1 2 3 ntrclsiex ( 𝜑𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
77 76 3ad2ant1 ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
78 elmapi ( 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
79 77 78 syl ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
80 2 3 ntrclsbex ( 𝜑𝐵 ∈ V )
81 80 3ad2ant1 ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → 𝐵 ∈ V )
82 difssd ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵𝑠 ) ⊆ 𝐵 )
83 81 82 sselpwd ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵𝑠 ) ∈ 𝒫 𝐵 )
84 79 83 ffvelrnd ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∈ 𝒫 𝐵 )
85 84 elpwid ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ ( 𝐵𝑠 ) ) ⊆ 𝐵 )
86 ssinss1 ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ⊆ 𝐵 → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ⊆ 𝐵 )
87 85 86 syl ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ⊆ 𝐵 )
88 0ss ∅ ⊆ 𝐵
89 rcompleq ( ( ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ⊆ 𝐵 ∧ ∅ ⊆ 𝐵 ) → ( ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) = ∅ ↔ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = ( 𝐵 ∖ ∅ ) ) )
90 87 88 89 sylancl ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) = ∅ ↔ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = ( 𝐵 ∖ ∅ ) ) )
91 difindi ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) )
92 dif0 ( 𝐵 ∖ ∅ ) = 𝐵
93 91 92 eqeq12i ( ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = ( 𝐵 ∖ ∅ ) ↔ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = 𝐵 )
94 90 93 bitrdi ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) = ∅ ↔ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = 𝐵 ) )
95 75 94 imbi12d ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) ) = ∅ → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) = ∅ ) ↔ ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = 𝐵 ) ) )
96 eqid ( 𝐷𝐼 ) = ( 𝐷𝐼 )
97 eqid ( ( 𝐷𝐼 ) ‘ 𝑠 ) = ( ( 𝐷𝐼 ) ‘ 𝑠 )
98 1 2 81 77 96 64 97 dssmapfv3d ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝐷𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) )
99 eqid ( ( 𝐷𝐼 ) ‘ 𝑡 ) = ( ( 𝐷𝐼 ) ‘ 𝑡 )
100 1 2 81 77 96 66 99 dssmapfv3d ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝐷𝐼 ) ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) )
101 98 100 uneq12d ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝐷𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷𝐼 ) ‘ 𝑡 ) ) = ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) )
102 1 2 3 ntrclsfv1 ( 𝜑 → ( 𝐷𝐼 ) = 𝐾 )
103 102 3ad2ant1 ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( 𝐷𝐼 ) = 𝐾 )
104 fveq1 ( ( 𝐷𝐼 ) = 𝐾 → ( ( 𝐷𝐼 ) ‘ 𝑠 ) = ( 𝐾𝑠 ) )
105 fveq1 ( ( 𝐷𝐼 ) = 𝐾 → ( ( 𝐷𝐼 ) ‘ 𝑡 ) = ( 𝐾𝑡 ) )
106 104 105 uneq12d ( ( 𝐷𝐼 ) = 𝐾 → ( ( ( 𝐷𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷𝐼 ) ‘ 𝑡 ) ) = ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) )
107 103 106 syl ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝐷𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷𝐼 ) ‘ 𝑡 ) ) = ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) )
108 101 107 eqtr3d ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) )
109 108 eqeq1d ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = 𝐵 ↔ ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) = 𝐵 ) )
110 109 imbi2d ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) ) = 𝐵 ) ↔ ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) = 𝐵 ) ) )
111 95 110 bitrd ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ) → ( ( ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) ) = ∅ → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) = ∅ ) ↔ ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) = 𝐵 ) ) )
112 61 62 63 111 syl3anc ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = ( 𝐵𝑡 ) ) → ( ( ( ( 𝐵𝑠 ) ∩ ( 𝐵𝑡 ) ) = ∅ → ( ( 𝐼 ‘ ( 𝐵𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵𝑡 ) ) ) = ∅ ) ↔ ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) = 𝐵 ) ) )
113 52 60 112 3bitrd ( ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = ( 𝐵𝑡 ) ) → ( ( ( 𝑎𝑏 ) = ∅ → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ↔ ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) = 𝐵 ) ) )
114 32 44 113 ralxfrd2 ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑎 = ( 𝐵𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( ( 𝑎𝑏 ) = ∅ → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) = 𝐵 ) ) )
115 18 29 114 ralxfrd2 ( 𝜑 → ( ∀ 𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵 ( ( 𝑎𝑏 ) = ∅ → ( ( 𝐼𝑎 ) ∩ ( 𝐼𝑏 ) ) = ∅ ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) = 𝐵 ) ) )
116 16 115 syl5bb ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = ∅ → ( ( 𝐼𝑠 ) ∩ ( 𝐼𝑡 ) ) = ∅ ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵 ( ( 𝑠𝑡 ) = 𝐵 → ( ( 𝐾𝑠 ) ∪ ( 𝐾𝑡 ) ) = 𝐵 ) ) )