| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
| 3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
| 4 |
|
fveq2 |
⊢ ( 𝑠 = 𝑎 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑎 ) ) |
| 5 |
4
|
ineq1d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ) |
| 6 |
|
ineq1 |
⊢ ( 𝑠 = 𝑎 → ( 𝑠 ∩ 𝑡 ) = ( 𝑎 ∩ 𝑡 ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝑠 = 𝑎 → ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) ) |
| 8 |
5 7
|
sseq12d |
⊢ ( 𝑠 = 𝑎 → ( ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ↔ ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ 𝑏 ) ) |
| 10 |
9
|
ineq2d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
| 11 |
|
ineq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝑎 ∩ 𝑡 ) = ( 𝑎 ∩ 𝑏 ) ) |
| 12 |
11
|
fveq2d |
⊢ ( 𝑡 = 𝑏 → ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) = ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ) |
| 13 |
10 12
|
sseq12d |
⊢ ( 𝑡 = 𝑏 → ( ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) ↔ ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ) ) |
| 14 |
8 13
|
cbvral2vw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ↔ ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ) |
| 15 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 16 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
| 17 |
15 16
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 19 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) |
| 20 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
| 21 |
|
difssd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ⊆ 𝐵 ) |
| 22 |
20 21
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ∈ 𝒫 𝐵 ) |
| 23 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → 𝑠 = ( 𝐵 ∖ 𝑎 ) ) |
| 24 |
23
|
difeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) |
| 25 |
24
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) ) |
| 26 |
|
eqcom |
⊢ ( 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 27 |
25 26
|
bitrdi |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) ) |
| 28 |
|
dfss4 |
⊢ ( 𝑎 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 29 |
28
|
biimpi |
⊢ ( 𝑎 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 31 |
22 27 30
|
rspcedvd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
| 32 |
15 19 31
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
| 33 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝜑 ) |
| 34 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ⊆ 𝐵 ) |
| 35 |
15 34
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 36 |
33 35
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 37 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵 ) |
| 38 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
| 39 |
|
difssd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ⊆ 𝐵 ) |
| 40 |
38 39
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 41 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → 𝑡 = ( 𝐵 ∖ 𝑏 ) ) |
| 42 |
41
|
difeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) |
| 43 |
42
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) ) |
| 44 |
|
eqcom |
⊢ ( 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 45 |
43 44
|
bitrdi |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) ) |
| 46 |
|
dfss4 |
⊢ ( 𝑏 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 47 |
46
|
biimpi |
⊢ ( 𝑏 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 49 |
40 45 48
|
rspcedvd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
| 50 |
15 37 49
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
| 51 |
50
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
| 52 |
|
simp13 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
| 53 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ 𝑎 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
| 54 |
53
|
ineq1d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
| 55 |
|
ineq1 |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝑎 ∩ 𝑏 ) = ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ) |
| 57 |
54 56
|
sseq12d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ) ) |
| 58 |
52 57
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ) ) |
| 59 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( 𝐼 ‘ 𝑏 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
| 60 |
59
|
ineq2d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 61 |
|
ineq2 |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) = ( ( 𝐵 ∖ 𝑠 ) ∩ ( 𝐵 ∖ 𝑡 ) ) ) |
| 62 |
|
difundi |
⊢ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐵 ∖ 𝑠 ) ∩ ( 𝐵 ∖ 𝑡 ) ) |
| 63 |
61 62
|
eqtr4di |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) = ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) |
| 64 |
63
|
fveq2d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) |
| 65 |
60 64
|
sseq12d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ↔ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ) |
| 66 |
65
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ↔ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ) |
| 67 |
|
simp11 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝜑 ) |
| 68 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 69 |
68 15
|
jca |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) ) |
| 70 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 72 |
|
simpr |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → 𝐵 ∈ V ) |
| 73 |
|
difssd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
| 74 |
72 73
|
sselpwd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 75 |
71 74
|
ffvelcdmd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∈ 𝒫 𝐵 ) |
| 76 |
75
|
elpwid |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) |
| 77 |
|
orc |
⊢ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ∨ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ 𝐵 ) ) |
| 78 |
|
inss |
⊢ ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ∨ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) |
| 79 |
76 77 78
|
3syl |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) |
| 80 |
|
difssd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ 𝐵 ) |
| 81 |
72 80
|
sselpwd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ∈ 𝒫 𝐵 ) |
| 82 |
71 81
|
ffvelcdmd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
| 83 |
82
|
elpwid |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ) |
| 84 |
79 83
|
jca |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ∧ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ) ) |
| 85 |
|
sscon34b |
⊢ ( ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ∧ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 86 |
67 69 84 85
|
4syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 87 |
|
difindi |
⊢ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 88 |
87
|
sseq2i |
⊢ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 89 |
88
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 90 |
67 15
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐵 ∈ V ) |
| 91 |
67 68
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 92 |
|
simp12 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 93 |
|
rp-simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 94 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐵 ∈ V ) |
| 95 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 96 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐼 ) = ( 𝐷 ‘ 𝐼 ) |
| 97 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐵 ∈ V ) |
| 98 |
|
simprl |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 99 |
98
|
elpwid |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ⊆ 𝐵 ) |
| 100 |
|
simprr |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 101 |
100
|
elpwid |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ⊆ 𝐵 ) |
| 102 |
99 101
|
unssd |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ⊆ 𝐵 ) |
| 103 |
97 102
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 104 |
103
|
3ad2antl2 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 105 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) |
| 106 |
1 2 94 95 96 104 105
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ) |
| 107 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝜑 ) |
| 108 |
1 2 3
|
ntrclsfv1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
| 109 |
108
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ) |
| 110 |
107 109
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ) |
| 111 |
106 110
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) = ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ) |
| 112 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 113 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) |
| 114 |
1 2 94 95 96 112 113
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 115 |
108
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐾 ‘ 𝑠 ) ) |
| 116 |
107 115
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐾 ‘ 𝑠 ) ) |
| 117 |
114 116
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐾 ‘ 𝑠 ) ) |
| 118 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 119 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) |
| 120 |
1 2 94 95 96 118 119
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 121 |
108
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐾 ‘ 𝑡 ) ) |
| 122 |
107 121
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐾 ‘ 𝑡 ) ) |
| 123 |
120 122
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐾 ‘ 𝑡 ) ) |
| 124 |
117 123
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) |
| 125 |
111 124
|
sseq12d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 126 |
67 90 91 92 93 125
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 127 |
86 89 126
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 128 |
58 66 127
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 129 |
36 51 128
|
ralxfrd2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 130 |
18 32 129
|
ralxfrd2 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 131 |
14 130
|
bitrid |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |