Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
4 |
|
fveq2 |
⊢ ( 𝑠 = 𝑎 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑎 ) ) |
5 |
4
|
ineq1d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ) |
6 |
|
ineq1 |
⊢ ( 𝑠 = 𝑎 → ( 𝑠 ∩ 𝑡 ) = ( 𝑎 ∩ 𝑡 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑠 = 𝑎 → ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) ) |
8 |
5 7
|
sseq12d |
⊢ ( 𝑠 = 𝑎 → ( ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ↔ ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ 𝑏 ) ) |
10 |
9
|
ineq2d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
11 |
|
ineq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝑎 ∩ 𝑡 ) = ( 𝑎 ∩ 𝑏 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑡 = 𝑏 → ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) = ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ) |
13 |
10 12
|
sseq12d |
⊢ ( 𝑡 = 𝑏 → ( ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) ↔ ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ) ) |
14 |
8 13
|
cbvral2vw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ↔ ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ) |
15 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
16 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
17 |
15 16
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
19 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) |
20 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
21 |
|
difssd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ⊆ 𝐵 ) |
22 |
20 21
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ∈ 𝒫 𝐵 ) |
23 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → 𝑠 = ( 𝐵 ∖ 𝑎 ) ) |
24 |
23
|
difeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) |
25 |
24
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) ) |
26 |
|
eqcom |
⊢ ( 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
27 |
25 26
|
bitrdi |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) ) |
28 |
|
dfss4 |
⊢ ( 𝑎 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
29 |
28
|
biimpi |
⊢ ( 𝑎 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
30 |
29
|
adantl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
31 |
22 27 30
|
rspcedvd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
32 |
15 19 31
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
33 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝜑 ) |
34 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ⊆ 𝐵 ) |
35 |
15 34
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
36 |
33 35
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
37 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵 ) |
38 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
39 |
|
difssd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ⊆ 𝐵 ) |
40 |
38 39
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ∈ 𝒫 𝐵 ) |
41 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → 𝑡 = ( 𝐵 ∖ 𝑏 ) ) |
42 |
41
|
difeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) |
43 |
42
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) ) |
44 |
|
eqcom |
⊢ ( 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
45 |
43 44
|
bitrdi |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) ) |
46 |
|
dfss4 |
⊢ ( 𝑏 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
47 |
46
|
biimpi |
⊢ ( 𝑏 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
48 |
47
|
adantl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
49 |
40 45 48
|
rspcedvd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
50 |
15 37 49
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
51 |
50
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
52 |
|
simp13 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
53 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ 𝑎 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
54 |
53
|
ineq1d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
55 |
|
ineq1 |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝑎 ∩ 𝑏 ) = ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) |
56 |
55
|
fveq2d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ) |
57 |
54 56
|
sseq12d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ) ) |
58 |
52 57
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ) ) |
59 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( 𝐼 ‘ 𝑏 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
60 |
59
|
ineq2d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
61 |
|
ineq2 |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) = ( ( 𝐵 ∖ 𝑠 ) ∩ ( 𝐵 ∖ 𝑡 ) ) ) |
62 |
|
difundi |
⊢ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐵 ∖ 𝑠 ) ∩ ( 𝐵 ∖ 𝑡 ) ) |
63 |
61 62
|
eqtr4di |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) = ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) |
64 |
63
|
fveq2d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) |
65 |
60 64
|
sseq12d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ↔ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ) |
66 |
65
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ↔ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ) |
67 |
|
simp11 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝜑 ) |
68 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
69 |
68 15
|
jca |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) ) |
70 |
67 69
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) ) |
71 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
72 |
71
|
adantr |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
73 |
|
simpr |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → 𝐵 ∈ V ) |
74 |
|
difssd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
75 |
73 74
|
sselpwd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
76 |
72 75
|
ffvelrnd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∈ 𝒫 𝐵 ) |
77 |
76
|
elpwid |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) |
78 |
|
orc |
⊢ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ∨ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ 𝐵 ) ) |
79 |
|
inss |
⊢ ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ∨ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) |
80 |
77 78 79
|
3syl |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) |
81 |
|
difssd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ 𝐵 ) |
82 |
73 81
|
sselpwd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ∈ 𝒫 𝐵 ) |
83 |
72 82
|
ffvelrnd |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
84 |
83
|
elpwid |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ) |
85 |
80 84
|
jca |
⊢ ( ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ∧ 𝐵 ∈ V ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ∧ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ) ) |
86 |
|
sscon34b |
⊢ ( ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ∧ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
87 |
70 85 86
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
88 |
|
difindi |
⊢ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
89 |
88
|
sseq2i |
⊢ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
90 |
89
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
91 |
67 15
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐵 ∈ V ) |
92 |
67 68
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
93 |
|
simp12 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
94 |
|
rp-simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
95 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐵 ∈ V ) |
96 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
97 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐼 ) = ( 𝐷 ‘ 𝐼 ) |
98 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐵 ∈ V ) |
99 |
|
simprl |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
100 |
99
|
elpwid |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ⊆ 𝐵 ) |
101 |
|
simprr |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
102 |
101
|
elpwid |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ⊆ 𝐵 ) |
103 |
100 102
|
unssd |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ⊆ 𝐵 ) |
104 |
98 103
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ∈ 𝒫 𝐵 ) |
105 |
104
|
3ad2antl2 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ∈ 𝒫 𝐵 ) |
106 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) |
107 |
1 2 95 96 97 105 106
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ) |
108 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝜑 ) |
109 |
1 2 3
|
ntrclsfv1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
110 |
109
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ) |
111 |
108 110
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ) |
112 |
107 111
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) = ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ) |
113 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
114 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) |
115 |
1 2 95 96 97 113 114
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
116 |
109
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐾 ‘ 𝑠 ) ) |
117 |
108 116
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐾 ‘ 𝑠 ) ) |
118 |
115 117
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐾 ‘ 𝑠 ) ) |
119 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
120 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) |
121 |
1 2 95 96 97 119 120
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
122 |
109
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐾 ‘ 𝑡 ) ) |
123 |
108 122
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐾 ‘ 𝑡 ) ) |
124 |
121 123
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) = ( 𝐾 ‘ 𝑡 ) ) |
125 |
118 124
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) |
126 |
112 125
|
sseq12d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ∧ 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
127 |
67 91 92 93 94 126
|
syl32anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ⊆ ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
128 |
87 90 127
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
129 |
58 66 128
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
130 |
36 51 129
|
ralxfrd2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
131 |
18 32 130
|
ralxfrd2 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ⊆ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
132 |
14 131
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ⊆ ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |