| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 |  | fveq2 |  |-  ( s = a -> ( I ` s ) = ( I ` a ) ) | 
						
							| 5 | 4 | ineq1d |  |-  ( s = a -> ( ( I ` s ) i^i ( I ` t ) ) = ( ( I ` a ) i^i ( I ` t ) ) ) | 
						
							| 6 |  | ineq1 |  |-  ( s = a -> ( s i^i t ) = ( a i^i t ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( s = a -> ( I ` ( s i^i t ) ) = ( I ` ( a i^i t ) ) ) | 
						
							| 8 | 5 7 | sseq12d |  |-  ( s = a -> ( ( ( I ` s ) i^i ( I ` t ) ) C_ ( I ` ( s i^i t ) ) <-> ( ( I ` a ) i^i ( I ` t ) ) C_ ( I ` ( a i^i t ) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( t = b -> ( I ` t ) = ( I ` b ) ) | 
						
							| 10 | 9 | ineq2d |  |-  ( t = b -> ( ( I ` a ) i^i ( I ` t ) ) = ( ( I ` a ) i^i ( I ` b ) ) ) | 
						
							| 11 |  | ineq2 |  |-  ( t = b -> ( a i^i t ) = ( a i^i b ) ) | 
						
							| 12 | 11 | fveq2d |  |-  ( t = b -> ( I ` ( a i^i t ) ) = ( I ` ( a i^i b ) ) ) | 
						
							| 13 | 10 12 | sseq12d |  |-  ( t = b -> ( ( ( I ` a ) i^i ( I ` t ) ) C_ ( I ` ( a i^i t ) ) <-> ( ( I ` a ) i^i ( I ` b ) ) C_ ( I ` ( a i^i b ) ) ) ) | 
						
							| 14 | 8 13 | cbvral2vw |  |-  ( A. s e. ~P B A. t e. ~P B ( ( I ` s ) i^i ( I ` t ) ) C_ ( I ` ( s i^i t ) ) <-> A. a e. ~P B A. b e. ~P B ( ( I ` a ) i^i ( I ` b ) ) C_ ( I ` ( a i^i b ) ) ) | 
						
							| 15 | 2 3 | ntrclsbex |  |-  ( ph -> B e. _V ) | 
						
							| 16 |  | difssd |  |-  ( ph -> ( B \ s ) C_ B ) | 
						
							| 17 | 15 16 | sselpwd |  |-  ( ph -> ( B \ s ) e. ~P B ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> ( B \ s ) e. ~P B ) | 
						
							| 19 |  | elpwi |  |-  ( a e. ~P B -> a C_ B ) | 
						
							| 20 |  | simpl |  |-  ( ( B e. _V /\ a C_ B ) -> B e. _V ) | 
						
							| 21 |  | difssd |  |-  ( ( B e. _V /\ a C_ B ) -> ( B \ a ) C_ B ) | 
						
							| 22 | 20 21 | sselpwd |  |-  ( ( B e. _V /\ a C_ B ) -> ( B \ a ) e. ~P B ) | 
						
							| 23 |  | simpr |  |-  ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> s = ( B \ a ) ) | 
						
							| 24 | 23 | difeq2d |  |-  ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> ( B \ s ) = ( B \ ( B \ a ) ) ) | 
						
							| 25 | 24 | eqeq2d |  |-  ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> ( a = ( B \ s ) <-> a = ( B \ ( B \ a ) ) ) ) | 
						
							| 26 |  | eqcom |  |-  ( a = ( B \ ( B \ a ) ) <-> ( B \ ( B \ a ) ) = a ) | 
						
							| 27 | 25 26 | bitrdi |  |-  ( ( ( B e. _V /\ a C_ B ) /\ s = ( B \ a ) ) -> ( a = ( B \ s ) <-> ( B \ ( B \ a ) ) = a ) ) | 
						
							| 28 |  | dfss4 |  |-  ( a C_ B <-> ( B \ ( B \ a ) ) = a ) | 
						
							| 29 | 28 | biimpi |  |-  ( a C_ B -> ( B \ ( B \ a ) ) = a ) | 
						
							| 30 | 29 | adantl |  |-  ( ( B e. _V /\ a C_ B ) -> ( B \ ( B \ a ) ) = a ) | 
						
							| 31 | 22 27 30 | rspcedvd |  |-  ( ( B e. _V /\ a C_ B ) -> E. s e. ~P B a = ( B \ s ) ) | 
						
							| 32 | 15 19 31 | syl2an |  |-  ( ( ph /\ a e. ~P B ) -> E. s e. ~P B a = ( B \ s ) ) | 
						
							| 33 |  | simpl1 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ph ) | 
						
							| 34 |  | difssd |  |-  ( ph -> ( B \ t ) C_ B ) | 
						
							| 35 | 15 34 | sselpwd |  |-  ( ph -> ( B \ t ) e. ~P B ) | 
						
							| 36 | 33 35 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) | 
						
							| 37 |  | elpwi |  |-  ( b e. ~P B -> b C_ B ) | 
						
							| 38 |  | simpl |  |-  ( ( B e. _V /\ b C_ B ) -> B e. _V ) | 
						
							| 39 |  | difssd |  |-  ( ( B e. _V /\ b C_ B ) -> ( B \ b ) C_ B ) | 
						
							| 40 | 38 39 | sselpwd |  |-  ( ( B e. _V /\ b C_ B ) -> ( B \ b ) e. ~P B ) | 
						
							| 41 |  | simpr |  |-  ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> t = ( B \ b ) ) | 
						
							| 42 | 41 | difeq2d |  |-  ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> ( B \ t ) = ( B \ ( B \ b ) ) ) | 
						
							| 43 | 42 | eqeq2d |  |-  ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> ( b = ( B \ t ) <-> b = ( B \ ( B \ b ) ) ) ) | 
						
							| 44 |  | eqcom |  |-  ( b = ( B \ ( B \ b ) ) <-> ( B \ ( B \ b ) ) = b ) | 
						
							| 45 | 43 44 | bitrdi |  |-  ( ( ( B e. _V /\ b C_ B ) /\ t = ( B \ b ) ) -> ( b = ( B \ t ) <-> ( B \ ( B \ b ) ) = b ) ) | 
						
							| 46 |  | dfss4 |  |-  ( b C_ B <-> ( B \ ( B \ b ) ) = b ) | 
						
							| 47 | 46 | biimpi |  |-  ( b C_ B -> ( B \ ( B \ b ) ) = b ) | 
						
							| 48 | 47 | adantl |  |-  ( ( B e. _V /\ b C_ B ) -> ( B \ ( B \ b ) ) = b ) | 
						
							| 49 | 40 45 48 | rspcedvd |  |-  ( ( B e. _V /\ b C_ B ) -> E. t e. ~P B b = ( B \ t ) ) | 
						
							| 50 | 15 37 49 | syl2an |  |-  ( ( ph /\ b e. ~P B ) -> E. t e. ~P B b = ( B \ t ) ) | 
						
							| 51 | 50 | 3ad2antl1 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ b e. ~P B ) -> E. t e. ~P B b = ( B \ t ) ) | 
						
							| 52 |  | simp13 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> a = ( B \ s ) ) | 
						
							| 53 |  | fveq2 |  |-  ( a = ( B \ s ) -> ( I ` a ) = ( I ` ( B \ s ) ) ) | 
						
							| 54 | 53 | ineq1d |  |-  ( a = ( B \ s ) -> ( ( I ` a ) i^i ( I ` b ) ) = ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) ) | 
						
							| 55 |  | ineq1 |  |-  ( a = ( B \ s ) -> ( a i^i b ) = ( ( B \ s ) i^i b ) ) | 
						
							| 56 | 55 | fveq2d |  |-  ( a = ( B \ s ) -> ( I ` ( a i^i b ) ) = ( I ` ( ( B \ s ) i^i b ) ) ) | 
						
							| 57 | 54 56 | sseq12d |  |-  ( a = ( B \ s ) -> ( ( ( I ` a ) i^i ( I ` b ) ) C_ ( I ` ( a i^i b ) ) <-> ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) C_ ( I ` ( ( B \ s ) i^i b ) ) ) ) | 
						
							| 58 | 52 57 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( I ` a ) i^i ( I ` b ) ) C_ ( I ` ( a i^i b ) ) <-> ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) C_ ( I ` ( ( B \ s ) i^i b ) ) ) ) | 
						
							| 59 |  | fveq2 |  |-  ( b = ( B \ t ) -> ( I ` b ) = ( I ` ( B \ t ) ) ) | 
						
							| 60 | 59 | ineq2d |  |-  ( b = ( B \ t ) -> ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) = ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) | 
						
							| 61 |  | ineq2 |  |-  ( b = ( B \ t ) -> ( ( B \ s ) i^i b ) = ( ( B \ s ) i^i ( B \ t ) ) ) | 
						
							| 62 |  | difundi |  |-  ( B \ ( s u. t ) ) = ( ( B \ s ) i^i ( B \ t ) ) | 
						
							| 63 | 61 62 | eqtr4di |  |-  ( b = ( B \ t ) -> ( ( B \ s ) i^i b ) = ( B \ ( s u. t ) ) ) | 
						
							| 64 | 63 | fveq2d |  |-  ( b = ( B \ t ) -> ( I ` ( ( B \ s ) i^i b ) ) = ( I ` ( B \ ( s u. t ) ) ) ) | 
						
							| 65 | 60 64 | sseq12d |  |-  ( b = ( B \ t ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) C_ ( I ` ( ( B \ s ) i^i b ) ) <-> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ ( I ` ( B \ ( s u. t ) ) ) ) ) | 
						
							| 66 | 65 | 3ad2ant3 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) C_ ( I ` ( ( B \ s ) i^i b ) ) <-> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ ( I ` ( B \ ( s u. t ) ) ) ) ) | 
						
							| 67 |  | simp11 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ph ) | 
						
							| 68 | 1 2 3 | ntrclsiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 69 | 68 15 | jca |  |-  ( ph -> ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) ) | 
						
							| 70 |  | elmapi |  |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) | 
						
							| 71 | 70 | adantr |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> I : ~P B --> ~P B ) | 
						
							| 72 |  | simpr |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> B e. _V ) | 
						
							| 73 |  | difssd |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( B \ s ) C_ B ) | 
						
							| 74 | 72 73 | sselpwd |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( B \ s ) e. ~P B ) | 
						
							| 75 | 71 74 | ffvelcdmd |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( I ` ( B \ s ) ) e. ~P B ) | 
						
							| 76 | 75 | elpwid |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( I ` ( B \ s ) ) C_ B ) | 
						
							| 77 |  | orc |  |-  ( ( I ` ( B \ s ) ) C_ B -> ( ( I ` ( B \ s ) ) C_ B \/ ( I ` ( B \ t ) ) C_ B ) ) | 
						
							| 78 |  | inss |  |-  ( ( ( I ` ( B \ s ) ) C_ B \/ ( I ` ( B \ t ) ) C_ B ) -> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ B ) | 
						
							| 79 | 76 77 78 | 3syl |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ B ) | 
						
							| 80 |  | difssd |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( B \ ( s u. t ) ) C_ B ) | 
						
							| 81 | 72 80 | sselpwd |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( B \ ( s u. t ) ) e. ~P B ) | 
						
							| 82 | 71 81 | ffvelcdmd |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( I ` ( B \ ( s u. t ) ) ) e. ~P B ) | 
						
							| 83 | 82 | elpwid |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( I ` ( B \ ( s u. t ) ) ) C_ B ) | 
						
							| 84 | 79 83 | jca |  |-  ( ( I e. ( ~P B ^m ~P B ) /\ B e. _V ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ B /\ ( I ` ( B \ ( s u. t ) ) ) C_ B ) ) | 
						
							| 85 |  | sscon34b |  |-  ( ( ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ B /\ ( I ` ( B \ ( s u. t ) ) ) C_ B ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ ( I ` ( B \ ( s u. t ) ) ) <-> ( B \ ( I ` ( B \ ( s u. t ) ) ) ) C_ ( B \ ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) ) ) | 
						
							| 86 | 67 69 84 85 | 4syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ ( I ` ( B \ ( s u. t ) ) ) <-> ( B \ ( I ` ( B \ ( s u. t ) ) ) ) C_ ( B \ ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) ) ) | 
						
							| 87 |  | difindi |  |-  ( B \ ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) = ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) | 
						
							| 88 | 87 | sseq2i |  |-  ( ( B \ ( I ` ( B \ ( s u. t ) ) ) ) C_ ( B \ ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) <-> ( B \ ( I ` ( B \ ( s u. t ) ) ) ) C_ ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) ) | 
						
							| 89 | 88 | a1i |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( B \ ( I ` ( B \ ( s u. t ) ) ) ) C_ ( B \ ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) <-> ( B \ ( I ` ( B \ ( s u. t ) ) ) ) C_ ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) ) ) | 
						
							| 90 | 67 15 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> B e. _V ) | 
						
							| 91 | 67 68 | syl |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 92 |  | simp12 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> s e. ~P B ) | 
						
							| 93 |  | rp-simp2 |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> t e. ~P B ) | 
						
							| 94 |  | simpl2 |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> B e. _V ) | 
						
							| 95 |  | simpl3 |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 96 |  | eqid |  |-  ( D ` I ) = ( D ` I ) | 
						
							| 97 |  | simpl |  |-  ( ( B e. _V /\ ( s e. ~P B /\ t e. ~P B ) ) -> B e. _V ) | 
						
							| 98 |  | simprl |  |-  ( ( B e. _V /\ ( s e. ~P B /\ t e. ~P B ) ) -> s e. ~P B ) | 
						
							| 99 | 98 | elpwid |  |-  ( ( B e. _V /\ ( s e. ~P B /\ t e. ~P B ) ) -> s C_ B ) | 
						
							| 100 |  | simprr |  |-  ( ( B e. _V /\ ( s e. ~P B /\ t e. ~P B ) ) -> t e. ~P B ) | 
						
							| 101 | 100 | elpwid |  |-  ( ( B e. _V /\ ( s e. ~P B /\ t e. ~P B ) ) -> t C_ B ) | 
						
							| 102 | 99 101 | unssd |  |-  ( ( B e. _V /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( s u. t ) C_ B ) | 
						
							| 103 | 97 102 | sselpwd |  |-  ( ( B e. _V /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( s u. t ) e. ~P B ) | 
						
							| 104 | 103 | 3ad2antl2 |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( s u. t ) e. ~P B ) | 
						
							| 105 |  | eqid |  |-  ( ( D ` I ) ` ( s u. t ) ) = ( ( D ` I ) ` ( s u. t ) ) | 
						
							| 106 | 1 2 94 95 96 104 105 | dssmapfv3d |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( ( D ` I ) ` ( s u. t ) ) = ( B \ ( I ` ( B \ ( s u. t ) ) ) ) ) | 
						
							| 107 |  | simpl1 |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ph ) | 
						
							| 108 | 1 2 3 | ntrclsfv1 |  |-  ( ph -> ( D ` I ) = K ) | 
						
							| 109 | 108 | fveq1d |  |-  ( ph -> ( ( D ` I ) ` ( s u. t ) ) = ( K ` ( s u. t ) ) ) | 
						
							| 110 | 107 109 | syl |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( ( D ` I ) ` ( s u. t ) ) = ( K ` ( s u. t ) ) ) | 
						
							| 111 | 106 110 | eqtr3d |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( B \ ( I ` ( B \ ( s u. t ) ) ) ) = ( K ` ( s u. t ) ) ) | 
						
							| 112 |  | simprl |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> s e. ~P B ) | 
						
							| 113 |  | eqid |  |-  ( ( D ` I ) ` s ) = ( ( D ` I ) ` s ) | 
						
							| 114 | 1 2 94 95 96 112 113 | dssmapfv3d |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( ( D ` I ) ` s ) = ( B \ ( I ` ( B \ s ) ) ) ) | 
						
							| 115 | 108 | fveq1d |  |-  ( ph -> ( ( D ` I ) ` s ) = ( K ` s ) ) | 
						
							| 116 | 107 115 | syl |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( ( D ` I ) ` s ) = ( K ` s ) ) | 
						
							| 117 | 114 116 | eqtr3d |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( B \ ( I ` ( B \ s ) ) ) = ( K ` s ) ) | 
						
							| 118 |  | simprr |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> t e. ~P B ) | 
						
							| 119 |  | eqid |  |-  ( ( D ` I ) ` t ) = ( ( D ` I ) ` t ) | 
						
							| 120 | 1 2 94 95 96 118 119 | dssmapfv3d |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( ( D ` I ) ` t ) = ( B \ ( I ` ( B \ t ) ) ) ) | 
						
							| 121 | 108 | fveq1d |  |-  ( ph -> ( ( D ` I ) ` t ) = ( K ` t ) ) | 
						
							| 122 | 107 121 | syl |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( ( D ` I ) ` t ) = ( K ` t ) ) | 
						
							| 123 | 120 122 | eqtr3d |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( B \ ( I ` ( B \ t ) ) ) = ( K ` t ) ) | 
						
							| 124 | 117 123 | uneq12d |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) = ( ( K ` s ) u. ( K ` t ) ) ) | 
						
							| 125 | 111 124 | sseq12d |  |-  ( ( ( ph /\ B e. _V /\ I e. ( ~P B ^m ~P B ) ) /\ ( s e. ~P B /\ t e. ~P B ) ) -> ( ( B \ ( I ` ( B \ ( s u. t ) ) ) ) C_ ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) <-> ( K ` ( s u. t ) ) C_ ( ( K ` s ) u. ( K ` t ) ) ) ) | 
						
							| 126 | 67 90 91 92 93 125 | syl32anc |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( B \ ( I ` ( B \ ( s u. t ) ) ) ) C_ ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) <-> ( K ` ( s u. t ) ) C_ ( ( K ` s ) u. ( K ` t ) ) ) ) | 
						
							| 127 | 86 89 126 | 3bitrd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ ( I ` ( B \ ( s u. t ) ) ) <-> ( K ` ( s u. t ) ) C_ ( ( K ` s ) u. ( K ` t ) ) ) ) | 
						
							| 128 | 58 66 127 | 3bitrd |  |-  ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( I ` a ) i^i ( I ` b ) ) C_ ( I ` ( a i^i b ) ) <-> ( K ` ( s u. t ) ) C_ ( ( K ` s ) u. ( K ` t ) ) ) ) | 
						
							| 129 | 36 51 128 | ralxfrd2 |  |-  ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) -> ( A. b e. ~P B ( ( I ` a ) i^i ( I ` b ) ) C_ ( I ` ( a i^i b ) ) <-> A. t e. ~P B ( K ` ( s u. t ) ) C_ ( ( K ` s ) u. ( K ` t ) ) ) ) | 
						
							| 130 | 18 32 129 | ralxfrd2 |  |-  ( ph -> ( A. a e. ~P B A. b e. ~P B ( ( I ` a ) i^i ( I ` b ) ) C_ ( I ` ( a i^i b ) ) <-> A. s e. ~P B A. t e. ~P B ( K ` ( s u. t ) ) C_ ( ( K ` s ) u. ( K ` t ) ) ) ) | 
						
							| 131 | 14 130 | bitrid |  |-  ( ph -> ( A. s e. ~P B A. t e. ~P B ( ( I ` s ) i^i ( I ` t ) ) C_ ( I ` ( s i^i t ) ) <-> A. s e. ~P B A. t e. ~P B ( K ` ( s u. t ) ) C_ ( ( K ` s ) u. ( K ` t ) ) ) ) |