Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
4 |
|
ineq1 |
⊢ ( 𝑠 = 𝑎 → ( 𝑠 ∩ 𝑡 ) = ( 𝑎 ∩ 𝑡 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝑠 = 𝑎 → ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑠 = 𝑎 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑎 ) ) |
7 |
6
|
ineq1d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ) |
8 |
5 7
|
eqeq12d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ) ) |
9 |
|
ineq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝑎 ∩ 𝑡 ) = ( 𝑎 ∩ 𝑏 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑡 = 𝑏 → ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) = ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ 𝑏 ) ) |
12 |
11
|
ineq2d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) ) |
14 |
8 13
|
cbvral2vw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
15 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
16 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
17 |
15 16
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
19 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) |
20 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
21 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ⊆ 𝐵 ) |
22 |
20 21
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ∈ 𝒫 𝐵 ) |
23 |
|
difeq2 |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑎 ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑎 ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) ) |
25 |
|
eqcom |
⊢ ( 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
26 |
24 25
|
bitrdi |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑎 ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) ) |
28 |
|
dfss4 |
⊢ ( 𝑎 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
29 |
28
|
biimpi |
⊢ ( 𝑎 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
31 |
22 27 30
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
32 |
19 31
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
33 |
|
ineq1 |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝑎 ∩ 𝑏 ) = ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) |
34 |
33
|
fveq2d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ 𝑎 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
36 |
35
|
ineq1d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
37 |
34 36
|
eqeq12d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) ) |
38 |
37
|
ralbidv |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) ) |
39 |
38
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) ) |
40 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ⊆ 𝐵 ) |
41 |
15 40
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
43 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → 𝜑 ) |
44 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵 ) |
45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → 𝑏 ⊆ 𝐵 ) |
46 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑏 ) ⊆ 𝐵 ) |
47 |
15 46
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑏 ) ∈ 𝒫 𝐵 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ∈ 𝒫 𝐵 ) |
49 |
|
difeq2 |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑏 ) → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) |
50 |
49
|
eqeq2d |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑏 ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) ) |
51 |
|
eqcom |
⊢ ( 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
52 |
50 51
|
bitrdi |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑏 ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) ) |
53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) ) |
54 |
|
dfss4 |
⊢ ( 𝑏 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
55 |
54
|
biimpi |
⊢ ( 𝑏 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
57 |
48 53 56
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
58 |
43 45 57
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
59 |
|
ineq2 |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) = ( ( 𝐵 ∖ 𝑠 ) ∩ ( 𝐵 ∖ 𝑡 ) ) ) |
60 |
|
difundi |
⊢ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐵 ∖ 𝑠 ) ∩ ( 𝐵 ∖ 𝑡 ) ) |
61 |
59 60
|
eqtr4di |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) = ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) |
62 |
61
|
fveq2d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) |
63 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( 𝐼 ‘ 𝑏 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
64 |
63
|
ineq2d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
65 |
62 64
|
eqeq12d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
66 |
65
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
67 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝜑 ) |
68 |
67 15
|
jccir |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝜑 ∧ 𝐵 ∈ V ) ) |
69 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
70 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
71 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
72 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
73 |
71 72
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
74 |
73
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) ) |
75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) ) |
76 |
|
simpl |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
77 |
|
simpr |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → 𝐵 ∈ V ) |
78 |
|
difssd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ 𝐵 ) |
79 |
77 78
|
sselpwd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ∈ 𝒫 𝐵 ) |
80 |
76 79
|
ffvelrnd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
81 |
80
|
elpwid |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ) |
82 |
|
difssd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
83 |
77 82
|
sselpwd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
84 |
76 83
|
ffvelrnd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∈ 𝒫 𝐵 ) |
85 |
84
|
elpwid |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) |
86 |
|
ssinss1 |
⊢ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) |
87 |
85 86
|
syl |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) |
88 |
81 87
|
jca |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ∧ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) ) |
89 |
|
rcompleq |
⊢ ( ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ∧ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
90 |
75 88 89
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
91 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐵 ∈ V ) |
92 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
93 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐼 ) = ( 𝐷 ‘ 𝐼 ) |
94 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
95 |
94
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ⊆ 𝐵 ) |
96 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
97 |
96
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ⊆ 𝐵 ) |
98 |
95 97
|
unssd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ⊆ 𝐵 ) |
99 |
91 98
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ∈ 𝒫 𝐵 ) |
100 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) |
101 |
1 2 91 92 93 99 100
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ) |
102 |
|
simpl |
⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
103 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐵 ∈ V ) |
104 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
105 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
106 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) |
107 |
1 2 103 104 93 105 106
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
108 |
102 107
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
109 |
|
simpr |
⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑡 ∈ 𝒫 𝐵 ) |
110 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝐵 ∈ V ) |
111 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
112 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑡 ∈ 𝒫 𝐵 ) |
113 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) |
114 |
1 2 110 111 93 112 113
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
115 |
109 114
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
116 |
108 115
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) = ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
117 |
|
difindi |
⊢ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
118 |
116 117
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) = ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
119 |
101 118
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
120 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝜑 ) |
121 |
1 2 3
|
ntrclsfv1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
122 |
|
fveq1 |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ) |
123 |
|
fveq1 |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐾 ‘ 𝑠 ) ) |
124 |
|
fveq1 |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐾 ‘ 𝑡 ) ) |
125 |
123 124
|
uneq12d |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) |
126 |
122 125
|
eqeq12d |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
127 |
120 121 126
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
128 |
90 119 127
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
129 |
68 69 70 128
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
130 |
66 129
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
131 |
42 58 130
|
ralxfrd2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
132 |
131
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
133 |
39 132
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
134 |
18 32 133
|
ralxfrd2 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
135 |
14 134
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |