| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
| 3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
| 4 |
|
ineq1 |
⊢ ( 𝑠 = 𝑎 → ( 𝑠 ∩ 𝑡 ) = ( 𝑎 ∩ 𝑡 ) ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑠 = 𝑎 → ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑠 = 𝑎 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑎 ) ) |
| 7 |
6
|
ineq1d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ) |
| 8 |
5 7
|
eqeq12d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ) ) |
| 9 |
|
ineq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝑎 ∩ 𝑡 ) = ( 𝑎 ∩ 𝑏 ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑡 = 𝑏 → ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) = ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑡 = 𝑏 → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ 𝑏 ) ) |
| 12 |
11
|
ineq2d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
| 13 |
10 12
|
eqeq12d |
⊢ ( 𝑡 = 𝑏 → ( ( 𝐼 ‘ ( 𝑎 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 14 |
8 13
|
cbvral2vw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
| 15 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 16 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
| 17 |
15 16
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 19 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) |
| 20 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
| 21 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ⊆ 𝐵 ) |
| 22 |
20 21
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ∈ 𝒫 𝐵 ) |
| 23 |
|
difeq2 |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑎 ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑎 ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) ) |
| 25 |
|
eqcom |
⊢ ( 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 26 |
24 25
|
bitrdi |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑎 ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) ) |
| 28 |
|
dfss4 |
⊢ ( 𝑎 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 29 |
28
|
biimpi |
⊢ ( 𝑎 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 31 |
22 27 30
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
| 32 |
19 31
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
| 33 |
|
ineq1 |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝑎 ∩ 𝑏 ) = ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ 𝑎 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
| 36 |
35
|
ineq1d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) |
| 37 |
34 36
|
eqeq12d |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 38 |
37
|
ralbidv |
⊢ ( 𝑎 = ( 𝐵 ∖ 𝑠 ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 39 |
38
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ) ) |
| 40 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ⊆ 𝐵 ) |
| 41 |
15 40
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 43 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → 𝜑 ) |
| 44 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵 ) |
| 45 |
44
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → 𝑏 ⊆ 𝐵 ) |
| 46 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑏 ) ⊆ 𝐵 ) |
| 47 |
15 46
|
sselpwd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 49 |
|
difeq2 |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑏 ) → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) |
| 50 |
49
|
eqeq2d |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑏 ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) ) |
| 51 |
|
eqcom |
⊢ ( 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 52 |
50 51
|
bitrdi |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑏 ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) ) |
| 54 |
|
dfss4 |
⊢ ( 𝑏 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 55 |
54
|
biimpi |
⊢ ( 𝑏 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 56 |
55
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 57 |
48 53 56
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
| 58 |
43 45 57
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
| 59 |
|
ineq2 |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) = ( ( 𝐵 ∖ 𝑠 ) ∩ ( 𝐵 ∖ 𝑡 ) ) ) |
| 60 |
|
difundi |
⊢ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐵 ∖ 𝑠 ) ∩ ( 𝐵 ∖ 𝑡 ) ) |
| 61 |
59 60
|
eqtr4di |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) = ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) |
| 62 |
61
|
fveq2d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( 𝐼 ‘ 𝑏 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
| 64 |
63
|
ineq2d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 65 |
62 64
|
eqeq12d |
⊢ ( 𝑏 = ( 𝐵 ∖ 𝑡 ) → ( ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 66 |
65
|
3ad2ant3 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 67 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝜑 ) |
| 68 |
67 15
|
jccir |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝜑 ∧ 𝐵 ∈ V ) ) |
| 69 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 70 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 71 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 72 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 73 |
71 72
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 74 |
73
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ V ) → ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) ) |
| 75 |
74
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) ) |
| 76 |
|
simpl |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 77 |
|
simpr |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → 𝐵 ∈ V ) |
| 78 |
|
difssd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ⊆ 𝐵 ) |
| 79 |
77 78
|
sselpwd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ∈ 𝒫 𝐵 ) |
| 80 |
76 79
|
ffvelcdmd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ∈ 𝒫 𝐵 ) |
| 81 |
80
|
elpwid |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ) |
| 82 |
|
difssd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
| 83 |
77 82
|
sselpwd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 84 |
76 83
|
ffvelcdmd |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∈ 𝒫 𝐵 ) |
| 85 |
84
|
elpwid |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) |
| 86 |
|
ssinss1 |
⊢ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) |
| 87 |
85 86
|
syl |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) |
| 88 |
81 87
|
jca |
⊢ ( ( 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ∧ 𝐵 ∈ V ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ∧ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) ) |
| 89 |
|
rcompleq |
⊢ ( ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ⊆ 𝐵 ∧ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ⊆ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 90 |
75 88 89
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 91 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐵 ∈ V ) |
| 92 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 93 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐼 ) = ( 𝐷 ‘ 𝐼 ) |
| 94 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 95 |
94
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑠 ⊆ 𝐵 ) |
| 96 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 97 |
96
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝑡 ⊆ 𝐵 ) |
| 98 |
95 97
|
unssd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ⊆ 𝐵 ) |
| 99 |
91 98
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( 𝑠 ∪ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 100 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) |
| 101 |
1 2 91 92 93 99 100
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) ) |
| 102 |
|
simpl |
⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 103 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐵 ∈ V ) |
| 104 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 105 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 106 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) |
| 107 |
1 2 103 104 93 105 106
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 108 |
102 107
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 109 |
|
simpr |
⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 110 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝐵 ∈ V ) |
| 111 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 112 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 113 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) |
| 114 |
1 2 110 111 93 112 113
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 115 |
109 114
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 116 |
108 115
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) = ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 117 |
|
difindi |
⊢ ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) = ( ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∪ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 118 |
116 117
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) = ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 119 |
101 118
|
eqeq12d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) ) = ( 𝐵 ∖ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 120 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → 𝜑 ) |
| 121 |
1 2 3
|
ntrclsfv1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
| 122 |
|
fveq1 |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) ) |
| 123 |
|
fveq1 |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐾 ‘ 𝑠 ) ) |
| 124 |
|
fveq1 |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐾 ‘ 𝑡 ) ) |
| 125 |
123 124
|
uneq12d |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) |
| 126 |
122 125
|
eqeq12d |
⊢ ( ( 𝐷 ‘ 𝐼 ) = 𝐾 → ( ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 127 |
120 121 126
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) ∪ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 128 |
90 119 127
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝐵 ∈ V ) ∧ ( 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 ∈ 𝒫 𝐵 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 129 |
68 69 70 128
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ ( 𝑠 ∪ 𝑡 ) ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 130 |
66 129
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 131 |
42 58 130
|
ralxfrd2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 132 |
131
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( ( 𝐵 ∖ 𝑠 ) ∩ 𝑏 ) ) = ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 133 |
39 132
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 134 |
18 32 133
|
ralxfrd2 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( ( 𝐼 ‘ 𝑎 ) ∩ ( 𝐼 ‘ 𝑏 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 135 |
14 134
|
bitrid |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝑠 ∩ 𝑡 ) ) = ( ( 𝐼 ‘ 𝑠 ) ∩ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝑠 ∪ 𝑡 ) ) = ( ( 𝐾 ‘ 𝑠 ) ∪ ( 𝐾 ‘ 𝑡 ) ) ) ) |