| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o | ⊢ 𝑂  =  ( 𝑖  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑖  ↑m  𝒫  𝑖 )  ↦  ( 𝑗  ∈  𝒫  𝑖  ↦  ( 𝑖  ∖  ( 𝑘 ‘ ( 𝑖  ∖  𝑗 ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d | ⊢ 𝐷  =  ( 𝑂 ‘ 𝐵 ) | 
						
							| 3 |  | ntrcls.r | ⊢ ( 𝜑  →  𝐼 𝐷 𝐾 ) | 
						
							| 4 |  | ineq1 | ⊢ ( 𝑠  =  𝑎  →  ( 𝑠  ∩  𝑡 )  =  ( 𝑎  ∩  𝑡 ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑠  =  𝑎  →  ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  =  ( 𝐼 ‘ ( 𝑎  ∩  𝑡 ) ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑠  =  𝑎  →  ( 𝐼 ‘ 𝑠 )  =  ( 𝐼 ‘ 𝑎 ) ) | 
						
							| 7 | 6 | ineq1d | ⊢ ( 𝑠  =  𝑎  →  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) ) ) | 
						
							| 8 | 5 7 | eqeq12d | ⊢ ( 𝑠  =  𝑎  →  ( ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  =  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ↔  ( 𝐼 ‘ ( 𝑎  ∩  𝑡 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) ) ) ) | 
						
							| 9 |  | ineq2 | ⊢ ( 𝑡  =  𝑏  →  ( 𝑎  ∩  𝑡 )  =  ( 𝑎  ∩  𝑏 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑡  =  𝑏  →  ( 𝐼 ‘ ( 𝑎  ∩  𝑡 ) )  =  ( 𝐼 ‘ ( 𝑎  ∩  𝑏 ) ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑡  =  𝑏  →  ( 𝐼 ‘ 𝑡 )  =  ( 𝐼 ‘ 𝑏 ) ) | 
						
							| 12 | 11 | ineq2d | ⊢ ( 𝑡  =  𝑏  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) ) ) | 
						
							| 13 | 10 12 | eqeq12d | ⊢ ( 𝑡  =  𝑏  →  ( ( 𝐼 ‘ ( 𝑎  ∩  𝑡 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ↔  ( 𝐼 ‘ ( 𝑎  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) ) ) ) | 
						
							| 14 | 8 13 | cbvral2vw | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  =  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑎  ∈  𝒫  𝐵 ∀ 𝑏  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑎  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) ) ) | 
						
							| 15 | 2 3 | ntrclsbex | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 16 |  | difssd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑠 )  ⊆  𝐵 ) | 
						
							| 17 | 15 16 | sselpwd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 19 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  𝐵  →  𝑎  ⊆  𝐵 ) | 
						
							| 20 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ⊆  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 21 |  | difssd | ⊢ ( ( 𝜑  ∧  𝑎  ⊆  𝐵 )  →  ( 𝐵  ∖  𝑎 )  ⊆  𝐵 ) | 
						
							| 22 | 20 21 | sselpwd | ⊢ ( ( 𝜑  ∧  𝑎  ⊆  𝐵 )  →  ( 𝐵  ∖  𝑎 )  ∈  𝒫  𝐵 ) | 
						
							| 23 |  | difeq2 | ⊢ ( 𝑠  =  ( 𝐵  ∖  𝑎 )  →  ( 𝐵  ∖  𝑠 )  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑠  =  ( 𝐵  ∖  𝑎 )  →  ( 𝑎  =  ( 𝐵  ∖  𝑠 )  ↔  𝑎  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) ) ) ) | 
						
							| 25 |  | eqcom | ⊢ ( 𝑎  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 26 | 24 25 | bitrdi | ⊢ ( 𝑠  =  ( 𝐵  ∖  𝑎 )  →  ( 𝑎  =  ( 𝐵  ∖  𝑠 )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑎  ⊆  𝐵 )  ∧  𝑠  =  ( 𝐵  ∖  𝑎 ) )  →  ( 𝑎  =  ( 𝐵  ∖  𝑠 )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) ) | 
						
							| 28 |  | dfss4 | ⊢ ( 𝑎  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 29 | 28 | biimpi | ⊢ ( 𝑎  ⊆  𝐵  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ⊆  𝐵 )  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 31 | 22 27 30 | rspcedvd | ⊢ ( ( 𝜑  ∧  𝑎  ⊆  𝐵 )  →  ∃ 𝑠  ∈  𝒫  𝐵 𝑎  =  ( 𝐵  ∖  𝑠 ) ) | 
						
							| 32 | 19 31 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝐵 )  →  ∃ 𝑠  ∈  𝒫  𝐵 𝑎  =  ( 𝐵  ∖  𝑠 ) ) | 
						
							| 33 |  | ineq1 | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( 𝑎  ∩  𝑏 )  =  ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( 𝐼 ‘ ( 𝑎  ∩  𝑏 ) )  =  ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( 𝐼 ‘ 𝑎 )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 36 | 35 | ineq1d | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) ) ) | 
						
							| 37 | 34 36 | eqeq12d | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( ( 𝐼 ‘ ( 𝑎  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) ) ) ) | 
						
							| 38 | 37 | ralbidv | ⊢ ( 𝑎  =  ( 𝐵  ∖  𝑠 )  →  ( ∀ 𝑏  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑎  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ∀ 𝑏  ∈  𝒫  𝐵 ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) ) ) ) | 
						
							| 39 | 38 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  →  ( ∀ 𝑏  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑎  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ∀ 𝑏  ∈  𝒫  𝐵 ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) ) ) ) | 
						
							| 40 |  | difssd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑡 )  ⊆  𝐵 ) | 
						
							| 41 | 15 40 | sselpwd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑡 )  ∈  𝒫  𝐵 ) | 
						
							| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑡 )  ∈  𝒫  𝐵 ) | 
						
							| 43 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑏  ∈  𝒫  𝐵 )  →  𝜑 ) | 
						
							| 44 |  | elpwi | ⊢ ( 𝑏  ∈  𝒫  𝐵  →  𝑏  ⊆  𝐵 ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑏  ∈  𝒫  𝐵 )  →  𝑏  ⊆  𝐵 ) | 
						
							| 46 |  | difssd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑏 )  ⊆  𝐵 ) | 
						
							| 47 | 15 46 | sselpwd | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑏 )  ∈  𝒫  𝐵 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐵 )  →  ( 𝐵  ∖  𝑏 )  ∈  𝒫  𝐵 ) | 
						
							| 49 |  | difeq2 | ⊢ ( 𝑡  =  ( 𝐵  ∖  𝑏 )  →  ( 𝐵  ∖  𝑡 )  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) ) ) | 
						
							| 50 | 49 | eqeq2d | ⊢ ( 𝑡  =  ( 𝐵  ∖  𝑏 )  →  ( 𝑏  =  ( 𝐵  ∖  𝑡 )  ↔  𝑏  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) ) ) ) | 
						
							| 51 |  | eqcom | ⊢ ( 𝑏  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 52 | 50 51 | bitrdi | ⊢ ( 𝑡  =  ( 𝐵  ∖  𝑏 )  →  ( 𝑏  =  ( 𝐵  ∖  𝑡 )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑏  ⊆  𝐵 )  ∧  𝑡  =  ( 𝐵  ∖  𝑏 ) )  →  ( 𝑏  =  ( 𝐵  ∖  𝑡 )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) ) | 
						
							| 54 |  | dfss4 | ⊢ ( 𝑏  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 55 | 54 | biimpi | ⊢ ( 𝑏  ⊆  𝐵  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐵 )  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 57 | 48 53 56 | rspcedvd | ⊢ ( ( 𝜑  ∧  𝑏  ⊆  𝐵 )  →  ∃ 𝑡  ∈  𝒫  𝐵 𝑏  =  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 58 | 43 45 57 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑏  ∈  𝒫  𝐵 )  →  ∃ 𝑡  ∈  𝒫  𝐵 𝑏  =  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 59 |  | ineq2 | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 )  =  ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) ) ) | 
						
							| 60 |  | difundi | ⊢ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐵  ∖  𝑠 )  ∩  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 61 | 59 60 | eqtr4di | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 )  =  ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( 𝐼 ‘ 𝑏 )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) | 
						
							| 64 | 63 | ineq2d | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 65 | 62 64 | eqeq12d | ⊢ ( 𝑏  =  ( 𝐵  ∖  𝑡 )  →  ( ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) | 
						
							| 66 | 65 | 3ad2ant3 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) | 
						
							| 67 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝜑 ) | 
						
							| 68 | 67 15 | jccir | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝜑  ∧  𝐵  ∈  V ) ) | 
						
							| 69 |  | simp1r | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 70 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑡  ∈  𝒫  𝐵 ) | 
						
							| 71 | 1 2 3 | ntrclsiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 72 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 73 | 71 72 | syl | ⊢ ( 𝜑  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 74 | 73 | anim1i | ⊢ ( ( 𝜑  ∧  𝐵  ∈  V )  →  ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V ) ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V ) ) | 
						
							| 76 |  | simpl | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 77 |  | simpr | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  𝐵  ∈  V ) | 
						
							| 78 |  | difssd | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) )  ⊆  𝐵 ) | 
						
							| 79 | 77 78 | sselpwd | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) )  ∈  𝒫  𝐵 ) | 
						
							| 80 | 76 79 | ffvelcdmd | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  ∈  𝒫  𝐵 ) | 
						
							| 81 | 80 | elpwid | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  ⊆  𝐵 ) | 
						
							| 82 |  | difssd | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( 𝐵  ∖  𝑠 )  ⊆  𝐵 ) | 
						
							| 83 | 77 82 | sselpwd | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 84 | 76 83 | ffvelcdmd | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∈  𝒫  𝐵 ) | 
						
							| 85 | 84 | elpwid | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ⊆  𝐵 ) | 
						
							| 86 |  | ssinss1 | ⊢ ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ⊆  𝐵  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ⊆  𝐵 ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ⊆  𝐵 ) | 
						
							| 88 | 81 87 | jca | ⊢ ( ( 𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵  ∧  𝐵  ∈  V )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  ⊆  𝐵  ∧  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ⊆  𝐵 ) ) | 
						
							| 89 |  | rcompleq | ⊢ ( ( ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  ⊆  𝐵  ∧  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ⊆  𝐵 )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) ) )  =  ( 𝐵  ∖  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) ) | 
						
							| 90 | 75 88 89 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) ) )  =  ( 𝐵  ∖  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) ) | 
						
							| 91 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  𝐵  ∈  V ) | 
						
							| 92 | 71 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 93 |  | eqid | ⊢ ( 𝐷 ‘ 𝐼 )  =  ( 𝐷 ‘ 𝐼 ) | 
						
							| 94 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 95 | 94 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  𝑠  ⊆  𝐵 ) | 
						
							| 96 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  𝑡  ∈  𝒫  𝐵 ) | 
						
							| 97 | 96 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  𝑡  ⊆  𝐵 ) | 
						
							| 98 | 95 97 | unssd | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( 𝑠  ∪  𝑡 )  ⊆  𝐵 ) | 
						
							| 99 | 91 98 | sselpwd | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( 𝑠  ∪  𝑡 )  ∈  𝒫  𝐵 ) | 
						
							| 100 |  | eqid | ⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠  ∪  𝑡 ) ) | 
						
							| 101 | 1 2 91 92 93 99 100 | dssmapfv3d | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠  ∪  𝑡 ) )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) ) ) ) | 
						
							| 102 |  | simpl | ⊢ ( ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 103 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 104 | 71 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 105 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 106 |  | eqid | ⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) | 
						
							| 107 | 1 2 103 104 93 105 106 | dssmapfv3d | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 108 | 102 107 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 109 |  | simpr | ⊢ ( ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝑡  ∈  𝒫  𝐵 ) | 
						
							| 110 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 111 | 71 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 112 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝑡  ∈  𝒫  𝐵 ) | 
						
							| 113 |  | eqid | ⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) | 
						
							| 114 | 1 2 110 111 93 112 113 | dssmapfv3d | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 115 | 109 114 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 116 | 108 115 | uneq12d | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  ∪  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) )  =  ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) | 
						
							| 117 |  | difindi | ⊢ ( 𝐵  ∖  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) )  =  ( ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∪  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 118 | 116 117 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  ∪  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) )  =  ( 𝐵  ∖  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) | 
						
							| 119 | 101 118 | eqeq12d | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  ∪  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) ) )  =  ( 𝐵  ∖  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) ) | 
						
							| 120 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  𝜑 ) | 
						
							| 121 | 1 2 3 | ntrclsfv1 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐼 )  =  𝐾 ) | 
						
							| 122 |  | fveq1 | ⊢ ( ( 𝐷 ‘ 𝐼 )  =  𝐾  →  ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠  ∪  𝑡 ) )  =  ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) ) ) | 
						
							| 123 |  | fveq1 | ⊢ ( ( 𝐷 ‘ 𝐼 )  =  𝐾  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( 𝐾 ‘ 𝑠 ) ) | 
						
							| 124 |  | fveq1 | ⊢ ( ( 𝐷 ‘ 𝐼 )  =  𝐾  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( 𝐾 ‘ 𝑡 ) ) | 
						
							| 125 | 123 124 | uneq12d | ⊢ ( ( 𝐷 ‘ 𝐼 )  =  𝐾  →  ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  ∪  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) | 
						
							| 126 | 122 125 | eqeq12d | ⊢ ( ( 𝐷 ‘ 𝐼 )  =  𝐾  →  ( ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  ∪  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) )  ↔  ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 127 | 120 121 126 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( ( ( 𝐷 ‘ 𝐼 ) ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  ∪  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) )  ↔  ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 128 | 90 119 127 | 3bitr2d | ⊢ ( ( ( 𝜑  ∧  𝐵  ∈  V )  ∧  ( 𝑠  ∈  𝒫  𝐵  ∧  𝑡  ∈  𝒫  𝐵 ) )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ↔  ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 129 | 68 69 70 128 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  ( 𝑠  ∪  𝑡 ) ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) )  ↔  ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 130 | 66 129 | bitrd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 131 | 42 58 130 | ralxfrd2 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ∀ 𝑏  ∈  𝒫  𝐵 ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 132 | 131 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  →  ( ∀ 𝑏  ∈  𝒫  𝐵 ( 𝐼 ‘ ( ( 𝐵  ∖  𝑠 )  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 133 | 39 132 | bitrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  →  ( ∀ 𝑏  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑎  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 134 | 18 32 133 | ralxfrd2 | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝒫  𝐵 ∀ 𝑏  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑎  ∩  𝑏 ) )  =  ( ( 𝐼 ‘ 𝑎 )  ∩  ( 𝐼 ‘ 𝑏 ) )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 135 | 14 134 | bitrid | ⊢ ( 𝜑  →  ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝑠  ∩  𝑡 ) )  =  ( ( 𝐼 ‘ 𝑠 )  ∩  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐾 ‘ ( 𝑠  ∪  𝑡 ) )  =  ( ( 𝐾 ‘ 𝑠 )  ∪  ( 𝐾 ‘ 𝑡 ) ) ) ) |