| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o | ⊢ 𝑂  =  ( 𝑖  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑖  ↑m  𝒫  𝑖 )  ↦  ( 𝑗  ∈  𝒫  𝑖  ↦  ( 𝑖  ∖  ( 𝑘 ‘ ( 𝑖  ∖  𝑗 ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d | ⊢ 𝐷  =  ( 𝑂 ‘ 𝐵 ) | 
						
							| 3 |  | ntrcls.r | ⊢ ( 𝜑  →  𝐼 𝐷 𝐾 ) | 
						
							| 4 |  | 2fveq3 | ⊢ ( 𝑠  =  𝑡  →  ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) )  =  ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑠  =  𝑡  →  ( 𝐼 ‘ 𝑠 )  =  ( 𝐼 ‘ 𝑡 ) ) | 
						
							| 6 | 4 5 | eqeq12d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) )  =  ( 𝐼 ‘ 𝑠 )  ↔  ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) )  =  ( 𝐼 ‘ 𝑡 ) ) ) | 
						
							| 7 | 6 | cbvralvw | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) )  =  ( 𝐼 ‘ 𝑠 )  ↔  ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) )  =  ( 𝐼 ‘ 𝑡 ) ) | 
						
							| 8 | 2 3 | ntrclsrcomplex | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 10 | 2 3 | ntrclsrcomplex | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑡 )  ∈  𝒫  𝐵 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑡 )  ∈  𝒫  𝐵 ) | 
						
							| 12 |  | difeq2 | ⊢ ( 𝑠  =  ( 𝐵  ∖  𝑡 )  →  ( 𝐵  ∖  𝑠 )  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑡 ) ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑠  =  ( 𝐵  ∖  𝑡 )  →  ( 𝑡  =  ( 𝐵  ∖  𝑠 )  ↔  𝑡  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵 )  ∧  𝑠  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝑡  =  ( 𝐵  ∖  𝑠 )  ↔  𝑡  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 15 |  | elpwi | ⊢ ( 𝑡  ∈  𝒫  𝐵  →  𝑡  ⊆  𝐵 ) | 
						
							| 16 |  | dfss4 | ⊢ ( 𝑡  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑡 ) )  =  𝑡 ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( 𝑡  ∈  𝒫  𝐵  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑡 ) )  =  𝑡 ) | 
						
							| 18 | 17 | eqcomd | ⊢ ( 𝑡  ∈  𝒫  𝐵  →  𝑡  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑡 ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝑡  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑡 ) ) ) | 
						
							| 20 | 11 14 19 | rspcedvd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝒫  𝐵 )  →  ∃ 𝑠  ∈  𝒫  𝐵 𝑡  =  ( 𝐵  ∖  𝑠 ) ) | 
						
							| 21 |  | 2fveq3 | ⊢ ( 𝑡  =  ( 𝐵  ∖  𝑠 )  →  ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) )  =  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑡  =  ( 𝐵  ∖  𝑠 )  →  ( 𝐼 ‘ 𝑡 )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 23 | 21 22 | eqeq12d | ⊢ ( 𝑡  =  ( 𝐵  ∖  𝑠 )  →  ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) )  =  ( 𝐼 ‘ 𝑡 )  ↔  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  =  ( 𝐵  ∖  𝑠 ) )  →  ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) )  =  ( 𝐼 ‘ 𝑡 )  ↔  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 25 | 1 2 3 | ntrclsiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 26 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 28 | 27 8 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∈  𝒫  𝐵 ) | 
						
							| 29 | 27 28 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ∈  𝒫  𝐵 ) | 
						
							| 30 | 29 | elpwid | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ⊆  𝐵 ) | 
						
							| 31 | 28 | elpwid | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ⊆  𝐵 ) | 
						
							| 32 |  | rcompleq | ⊢ ( ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ⊆  𝐵  ∧  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ⊆  𝐵 )  →  ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 33 | 30 31 32 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 35 | 1 2 3 | ntrclsnvobr | ⊢ ( 𝜑  →  𝐾 𝐷 𝐼 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝐾 𝐷 𝐼 ) | 
						
							| 37 | 1 2 35 | ntrclsiex | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 38 |  | elmapi | ⊢ ( 𝐾  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐾 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  𝐾 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 40 | 39 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐾 ‘ 𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 41 | 1 2 36 40 | ntrclsfv | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝐾 ‘ 𝑠 ) ) ) ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 43 | 1 2 36 42 | ntrclsfv | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐾 ‘ 𝑠 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 44 | 43 | difeq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐵  ∖  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 45 |  | dfss4 | ⊢ ( ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 46 | 31 45 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∖  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 48 | 44 47 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝐾 ‘ 𝑠 ) ) )  =  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 50 | 49 | difeq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  ( 𝐾 ‘ 𝑠 ) ) ) )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 51 | 41 50 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 52 | 51 43 | eqeq12d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐾 ‘ 𝑠 )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 53 | 34 52 | bitr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ↔  ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐾 ‘ 𝑠 ) ) ) | 
						
							| 54 | 53 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  =  ( 𝐵  ∖  𝑠 ) )  →  ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ↔  ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐾 ‘ 𝑠 ) ) ) | 
						
							| 55 | 24 54 | bitrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑡  =  ( 𝐵  ∖  𝑠 ) )  →  ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) )  =  ( 𝐼 ‘ 𝑡 )  ↔  ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐾 ‘ 𝑠 ) ) ) | 
						
							| 56 | 9 20 55 | ralxfrd2 | ⊢ ( 𝜑  →  ( ∀ 𝑡  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) )  =  ( 𝐼 ‘ 𝑡 )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐾 ‘ 𝑠 ) ) ) | 
						
							| 57 | 7 56 | bitrid | ⊢ ( 𝜑  →  ( ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) )  =  ( 𝐼 ‘ 𝑠 )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) )  =  ( 𝐾 ‘ 𝑠 ) ) ) |