Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
4 |
|
2fveq3 |
⊢ ( 𝑠 = 𝑡 → ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) = ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) ) ) |
5 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑡 ) ) |
6 |
4 5
|
eqeq12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) = ( 𝐼 ‘ 𝑠 ) ↔ ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) ) = ( 𝐼 ‘ 𝑡 ) ) ) |
7 |
6
|
cbvralvw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) = ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) ) = ( 𝐼 ‘ 𝑡 ) ) |
8 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
10 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
12 |
|
difeq2 |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑡 ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑡 ) → ( 𝑡 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑡 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝑡 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑡 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) ) |
15 |
|
elpwi |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵 ) |
16 |
|
dfss4 |
⊢ ( 𝑡 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
17 |
15 16
|
sylib |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
18 |
17
|
eqcomd |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → 𝑡 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝑡 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) |
20 |
11 14 19
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑡 = ( 𝐵 ∖ 𝑠 ) ) |
21 |
|
2fveq3 |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) ) = ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑠 ) → ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) ) = ( 𝐼 ‘ 𝑡 ) ↔ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
24 |
23
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) ) = ( 𝐼 ‘ 𝑡 ) ↔ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
25 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
26 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
28 |
27 8
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∈ 𝒫 𝐵 ) |
29 |
27 28
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ∈ 𝒫 𝐵 ) |
30 |
29
|
elpwid |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ 𝐵 ) |
31 |
28
|
elpwid |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) |
32 |
|
rcompleq |
⊢ ( ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ 𝐵 ∧ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
33 |
30 31 32
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
35 |
1 2 3
|
ntrclsnvobr |
⊢ ( 𝜑 → 𝐾 𝐷 𝐼 ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐾 𝐷 𝐼 ) |
37 |
1 2 35
|
ntrclsiex |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
38 |
|
elmapi |
⊢ ( 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐾 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → 𝐾 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
40 |
39
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐾 ‘ 𝑠 ) ∈ 𝒫 𝐵 ) |
41 |
1 2 36 40
|
ntrclsfv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝐾 ‘ 𝑠 ) ) ) ) ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
43 |
1 2 36 42
|
ntrclsfv |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐾 ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
44 |
43
|
difeq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐵 ∖ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
45 |
|
dfss4 |
⊢ ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
46 |
31 45
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
48 |
44 47
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
49 |
48
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐼 ‘ ( 𝐵 ∖ ( 𝐾 ‘ 𝑠 ) ) ) = ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
50 |
49
|
difeq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ( 𝐾 ‘ 𝑠 ) ) ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
51 |
41 50
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
52 |
51 43
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐾 ‘ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
53 |
34 52
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐾 ‘ 𝑠 ) ) ) |
54 |
53
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐼 ‘ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐾 ‘ 𝑠 ) ) ) |
55 |
24 54
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) ) = ( 𝐼 ‘ 𝑡 ) ↔ ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐾 ‘ 𝑠 ) ) ) |
56 |
9 20 55
|
ralxfrd2 |
⊢ ( 𝜑 → ( ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑡 ) ) = ( 𝐼 ‘ 𝑡 ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐾 ‘ 𝑠 ) ) ) |
57 |
7 56
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐼 ‘ ( 𝐼 ‘ 𝑠 ) ) = ( 𝐼 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ( 𝐾 ‘ ( 𝐾 ‘ 𝑠 ) ) = ( 𝐾 ‘ 𝑠 ) ) ) |