Metamath Proof Explorer


Theorem ntrclsnvobr

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then they are related the opposite way. (Contributed by RP, 21-May-2021)

Ref Expression
Hypotheses ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
ntrcls.d 𝐷 = ( 𝑂𝐵 )
ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
Assertion ntrclsnvobr ( 𝜑𝐾 𝐷 𝐼 )

Proof

Step Hyp Ref Expression
1 ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
2 ntrcls.d 𝐷 = ( 𝑂𝐵 )
3 ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
4 2 3 ntrclsbex ( 𝜑𝐵 ∈ V )
5 1 2 4 dssmapnvod ( 𝜑 𝐷 = 𝐷 )
6 1 2 3 ntrclsf1o ( 𝜑𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵m 𝒫 𝐵 ) )
7 f1orel ( 𝐷 : ( 𝒫 𝐵m 𝒫 𝐵 ) –1-1-onto→ ( 𝒫 𝐵m 𝒫 𝐵 ) → Rel 𝐷 )
8 relbrcnvg ( Rel 𝐷 → ( 𝐾 𝐷 𝐼𝐼 𝐷 𝐾 ) )
9 6 7 8 3syl ( 𝜑 → ( 𝐾 𝐷 𝐼𝐼 𝐷 𝐾 ) )
10 3 9 mpbird ( 𝜑𝐾 𝐷 𝐼 )
11 5 10 breqdi ( 𝜑𝐾 𝐷 𝐼 )