Metamath Proof Explorer


Theorem ntrclsnvobr

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then they are related the opposite way. (Contributed by RP, 21-May-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
Assertion ntrclsnvobr φ K D I

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 2 3 ntrclsbex φ B V
5 1 2 4 dssmapnvod φ D -1 = D
6 1 2 3 ntrclsf1o φ D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B
7 f1orel D : 𝒫 B 𝒫 B 1-1 onto 𝒫 B 𝒫 B Rel D
8 relbrcnvg Rel D K D -1 I I D K
9 6 7 8 3syl φ K D -1 I I D K
10 3 9 mpbird φ K D -1 I
11 5 10 breqdi φ K D I