Metamath Proof Explorer


Theorem ntrclsnvobr

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then they are related the opposite way. (Contributed by RP, 21-May-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
Assertion ntrclsnvobr
|- ( ph -> K D I )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 2 3 ntrclsbex
 |-  ( ph -> B e. _V )
5 1 2 4 dssmapnvod
 |-  ( ph -> `' D = D )
6 1 2 3 ntrclsf1o
 |-  ( ph -> D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) )
7 f1orel
 |-  ( D : ( ~P B ^m ~P B ) -1-1-onto-> ( ~P B ^m ~P B ) -> Rel D )
8 relbrcnvg
 |-  ( Rel D -> ( K `' D I <-> I D K ) )
9 6 7 8 3syl
 |-  ( ph -> ( K `' D I <-> I D K ) )
10 3 9 mpbird
 |-  ( ph -> K `' D I )
11 5 10 breqdi
 |-  ( ph -> K D I )