| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 |  | 2fveq3 |  |-  ( s = t -> ( I ` ( I ` s ) ) = ( I ` ( I ` t ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( s = t -> ( I ` s ) = ( I ` t ) ) | 
						
							| 6 | 4 5 | eqeq12d |  |-  ( s = t -> ( ( I ` ( I ` s ) ) = ( I ` s ) <-> ( I ` ( I ` t ) ) = ( I ` t ) ) ) | 
						
							| 7 | 6 | cbvralvw |  |-  ( A. s e. ~P B ( I ` ( I ` s ) ) = ( I ` s ) <-> A. t e. ~P B ( I ` ( I ` t ) ) = ( I ` t ) ) | 
						
							| 8 | 2 3 | ntrclsrcomplex |  |-  ( ph -> ( B \ s ) e. ~P B ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> ( B \ s ) e. ~P B ) | 
						
							| 10 | 2 3 | ntrclsrcomplex |  |-  ( ph -> ( B \ t ) e. ~P B ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ph /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) | 
						
							| 12 |  | difeq2 |  |-  ( s = ( B \ t ) -> ( B \ s ) = ( B \ ( B \ t ) ) ) | 
						
							| 13 | 12 | eqeq2d |  |-  ( s = ( B \ t ) -> ( t = ( B \ s ) <-> t = ( B \ ( B \ t ) ) ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ph /\ t e. ~P B ) /\ s = ( B \ t ) ) -> ( t = ( B \ s ) <-> t = ( B \ ( B \ t ) ) ) ) | 
						
							| 15 |  | elpwi |  |-  ( t e. ~P B -> t C_ B ) | 
						
							| 16 |  | dfss4 |  |-  ( t C_ B <-> ( B \ ( B \ t ) ) = t ) | 
						
							| 17 | 15 16 | sylib |  |-  ( t e. ~P B -> ( B \ ( B \ t ) ) = t ) | 
						
							| 18 | 17 | eqcomd |  |-  ( t e. ~P B -> t = ( B \ ( B \ t ) ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ t e. ~P B ) -> t = ( B \ ( B \ t ) ) ) | 
						
							| 20 | 11 14 19 | rspcedvd |  |-  ( ( ph /\ t e. ~P B ) -> E. s e. ~P B t = ( B \ s ) ) | 
						
							| 21 |  | 2fveq3 |  |-  ( t = ( B \ s ) -> ( I ` ( I ` t ) ) = ( I ` ( I ` ( B \ s ) ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( t = ( B \ s ) -> ( I ` t ) = ( I ` ( B \ s ) ) ) | 
						
							| 23 | 21 22 | eqeq12d |  |-  ( t = ( B \ s ) -> ( ( I ` ( I ` t ) ) = ( I ` t ) <-> ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) ) ) | 
						
							| 24 | 23 | 3ad2ant3 |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( I ` t ) ) = ( I ` t ) <-> ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) ) ) | 
						
							| 25 | 1 2 3 | ntrclsiex |  |-  ( ph -> I e. ( ~P B ^m ~P B ) ) | 
						
							| 26 |  | elmapi |  |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> I : ~P B --> ~P B ) | 
						
							| 28 | 27 8 | ffvelcdmd |  |-  ( ph -> ( I ` ( B \ s ) ) e. ~P B ) | 
						
							| 29 | 27 28 | ffvelcdmd |  |-  ( ph -> ( I ` ( I ` ( B \ s ) ) ) e. ~P B ) | 
						
							| 30 | 29 | elpwid |  |-  ( ph -> ( I ` ( I ` ( B \ s ) ) ) C_ B ) | 
						
							| 31 | 28 | elpwid |  |-  ( ph -> ( I ` ( B \ s ) ) C_ B ) | 
						
							| 32 |  | rcompleq |  |-  ( ( ( I ` ( I ` ( B \ s ) ) ) C_ B /\ ( I ` ( B \ s ) ) C_ B ) -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( I ` ( B \ s ) ) ) ) = ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 33 | 30 31 32 | syl2anc |  |-  ( ph -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( I ` ( B \ s ) ) ) ) = ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( I ` ( B \ s ) ) ) ) = ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 35 | 1 2 3 | ntrclsnvobr |  |-  ( ph -> K D I ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> K D I ) | 
						
							| 37 | 1 2 35 | ntrclsiex |  |-  ( ph -> K e. ( ~P B ^m ~P B ) ) | 
						
							| 38 |  | elmapi |  |-  ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B ) | 
						
							| 39 | 37 38 | syl |  |-  ( ph -> K : ~P B --> ~P B ) | 
						
							| 40 | 39 | ffvelcdmda |  |-  ( ( ph /\ s e. ~P B ) -> ( K ` s ) e. ~P B ) | 
						
							| 41 | 1 2 36 40 | ntrclsfv |  |-  ( ( ph /\ s e. ~P B ) -> ( K ` ( K ` s ) ) = ( B \ ( I ` ( B \ ( K ` s ) ) ) ) ) | 
						
							| 42 |  | simpr |  |-  ( ( ph /\ s e. ~P B ) -> s e. ~P B ) | 
						
							| 43 | 1 2 36 42 | ntrclsfv |  |-  ( ( ph /\ s e. ~P B ) -> ( K ` s ) = ( B \ ( I ` ( B \ s ) ) ) ) | 
						
							| 44 | 43 | difeq2d |  |-  ( ( ph /\ s e. ~P B ) -> ( B \ ( K ` s ) ) = ( B \ ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 45 |  | dfss4 |  |-  ( ( I ` ( B \ s ) ) C_ B <-> ( B \ ( B \ ( I ` ( B \ s ) ) ) ) = ( I ` ( B \ s ) ) ) | 
						
							| 46 | 31 45 | sylib |  |-  ( ph -> ( B \ ( B \ ( I ` ( B \ s ) ) ) ) = ( I ` ( B \ s ) ) ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ph /\ s e. ~P B ) -> ( B \ ( B \ ( I ` ( B \ s ) ) ) ) = ( I ` ( B \ s ) ) ) | 
						
							| 48 | 44 47 | eqtrd |  |-  ( ( ph /\ s e. ~P B ) -> ( B \ ( K ` s ) ) = ( I ` ( B \ s ) ) ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ( ph /\ s e. ~P B ) -> ( I ` ( B \ ( K ` s ) ) ) = ( I ` ( I ` ( B \ s ) ) ) ) | 
						
							| 50 | 49 | difeq2d |  |-  ( ( ph /\ s e. ~P B ) -> ( B \ ( I ` ( B \ ( K ` s ) ) ) ) = ( B \ ( I ` ( I ` ( B \ s ) ) ) ) ) | 
						
							| 51 | 41 50 | eqtrd |  |-  ( ( ph /\ s e. ~P B ) -> ( K ` ( K ` s ) ) = ( B \ ( I ` ( I ` ( B \ s ) ) ) ) ) | 
						
							| 52 | 51 43 | eqeq12d |  |-  ( ( ph /\ s e. ~P B ) -> ( ( K ` ( K ` s ) ) = ( K ` s ) <-> ( B \ ( I ` ( I ` ( B \ s ) ) ) ) = ( B \ ( I ` ( B \ s ) ) ) ) ) | 
						
							| 53 | 34 52 | bitr4d |  |-  ( ( ph /\ s e. ~P B ) -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( K ` ( K ` s ) ) = ( K ` s ) ) ) | 
						
							| 54 | 53 | 3adant3 |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( K ` ( K ` s ) ) = ( K ` s ) ) ) | 
						
							| 55 | 24 54 | bitrd |  |-  ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( I ` t ) ) = ( I ` t ) <-> ( K ` ( K ` s ) ) = ( K ` s ) ) ) | 
						
							| 56 | 9 20 55 | ralxfrd2 |  |-  ( ph -> ( A. t e. ~P B ( I ` ( I ` t ) ) = ( I ` t ) <-> A. s e. ~P B ( K ` ( K ` s ) ) = ( K ` s ) ) ) | 
						
							| 57 | 7 56 | bitrid |  |-  ( ph -> ( A. s e. ~P B ( I ` ( I ` s ) ) = ( I ` s ) <-> A. s e. ~P B ( K ` ( K ` s ) ) = ( K ` s ) ) ) |