Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
2 |
|
ntrcls.d |
|- D = ( O ` B ) |
3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
4 |
|
2fveq3 |
|- ( s = t -> ( I ` ( I ` s ) ) = ( I ` ( I ` t ) ) ) |
5 |
|
fveq2 |
|- ( s = t -> ( I ` s ) = ( I ` t ) ) |
6 |
4 5
|
eqeq12d |
|- ( s = t -> ( ( I ` ( I ` s ) ) = ( I ` s ) <-> ( I ` ( I ` t ) ) = ( I ` t ) ) ) |
7 |
6
|
cbvralvw |
|- ( A. s e. ~P B ( I ` ( I ` s ) ) = ( I ` s ) <-> A. t e. ~P B ( I ` ( I ` t ) ) = ( I ` t ) ) |
8 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ s ) e. ~P B ) |
9 |
8
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> ( B \ s ) e. ~P B ) |
10 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ t ) e. ~P B ) |
11 |
10
|
adantr |
|- ( ( ph /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) |
12 |
|
difeq2 |
|- ( s = ( B \ t ) -> ( B \ s ) = ( B \ ( B \ t ) ) ) |
13 |
12
|
eqeq2d |
|- ( s = ( B \ t ) -> ( t = ( B \ s ) <-> t = ( B \ ( B \ t ) ) ) ) |
14 |
13
|
adantl |
|- ( ( ( ph /\ t e. ~P B ) /\ s = ( B \ t ) ) -> ( t = ( B \ s ) <-> t = ( B \ ( B \ t ) ) ) ) |
15 |
|
elpwi |
|- ( t e. ~P B -> t C_ B ) |
16 |
|
dfss4 |
|- ( t C_ B <-> ( B \ ( B \ t ) ) = t ) |
17 |
15 16
|
sylib |
|- ( t e. ~P B -> ( B \ ( B \ t ) ) = t ) |
18 |
17
|
eqcomd |
|- ( t e. ~P B -> t = ( B \ ( B \ t ) ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ t e. ~P B ) -> t = ( B \ ( B \ t ) ) ) |
20 |
11 14 19
|
rspcedvd |
|- ( ( ph /\ t e. ~P B ) -> E. s e. ~P B t = ( B \ s ) ) |
21 |
|
2fveq3 |
|- ( t = ( B \ s ) -> ( I ` ( I ` t ) ) = ( I ` ( I ` ( B \ s ) ) ) ) |
22 |
|
fveq2 |
|- ( t = ( B \ s ) -> ( I ` t ) = ( I ` ( B \ s ) ) ) |
23 |
21 22
|
eqeq12d |
|- ( t = ( B \ s ) -> ( ( I ` ( I ` t ) ) = ( I ` t ) <-> ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) ) ) |
24 |
23
|
3ad2ant3 |
|- ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( I ` t ) ) = ( I ` t ) <-> ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) ) ) |
25 |
1 2 3
|
ntrclsiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
26 |
|
elmapi |
|- ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) |
27 |
25 26
|
syl |
|- ( ph -> I : ~P B --> ~P B ) |
28 |
27 8
|
ffvelrnd |
|- ( ph -> ( I ` ( B \ s ) ) e. ~P B ) |
29 |
27 28
|
ffvelrnd |
|- ( ph -> ( I ` ( I ` ( B \ s ) ) ) e. ~P B ) |
30 |
29
|
elpwid |
|- ( ph -> ( I ` ( I ` ( B \ s ) ) ) C_ B ) |
31 |
28
|
elpwid |
|- ( ph -> ( I ` ( B \ s ) ) C_ B ) |
32 |
|
rcompleq |
|- ( ( ( I ` ( I ` ( B \ s ) ) ) C_ B /\ ( I ` ( B \ s ) ) C_ B ) -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( I ` ( B \ s ) ) ) ) = ( B \ ( I ` ( B \ s ) ) ) ) ) |
33 |
30 31 32
|
syl2anc |
|- ( ph -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( I ` ( B \ s ) ) ) ) = ( B \ ( I ` ( B \ s ) ) ) ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( B \ ( I ` ( I ` ( B \ s ) ) ) ) = ( B \ ( I ` ( B \ s ) ) ) ) ) |
35 |
1 2 3
|
ntrclsnvobr |
|- ( ph -> K D I ) |
36 |
35
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> K D I ) |
37 |
1 2 35
|
ntrclsiex |
|- ( ph -> K e. ( ~P B ^m ~P B ) ) |
38 |
|
elmapi |
|- ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B ) |
39 |
37 38
|
syl |
|- ( ph -> K : ~P B --> ~P B ) |
40 |
39
|
ffvelrnda |
|- ( ( ph /\ s e. ~P B ) -> ( K ` s ) e. ~P B ) |
41 |
1 2 36 40
|
ntrclsfv |
|- ( ( ph /\ s e. ~P B ) -> ( K ` ( K ` s ) ) = ( B \ ( I ` ( B \ ( K ` s ) ) ) ) ) |
42 |
|
simpr |
|- ( ( ph /\ s e. ~P B ) -> s e. ~P B ) |
43 |
1 2 36 42
|
ntrclsfv |
|- ( ( ph /\ s e. ~P B ) -> ( K ` s ) = ( B \ ( I ` ( B \ s ) ) ) ) |
44 |
43
|
difeq2d |
|- ( ( ph /\ s e. ~P B ) -> ( B \ ( K ` s ) ) = ( B \ ( B \ ( I ` ( B \ s ) ) ) ) ) |
45 |
|
dfss4 |
|- ( ( I ` ( B \ s ) ) C_ B <-> ( B \ ( B \ ( I ` ( B \ s ) ) ) ) = ( I ` ( B \ s ) ) ) |
46 |
31 45
|
sylib |
|- ( ph -> ( B \ ( B \ ( I ` ( B \ s ) ) ) ) = ( I ` ( B \ s ) ) ) |
47 |
46
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> ( B \ ( B \ ( I ` ( B \ s ) ) ) ) = ( I ` ( B \ s ) ) ) |
48 |
44 47
|
eqtrd |
|- ( ( ph /\ s e. ~P B ) -> ( B \ ( K ` s ) ) = ( I ` ( B \ s ) ) ) |
49 |
48
|
fveq2d |
|- ( ( ph /\ s e. ~P B ) -> ( I ` ( B \ ( K ` s ) ) ) = ( I ` ( I ` ( B \ s ) ) ) ) |
50 |
49
|
difeq2d |
|- ( ( ph /\ s e. ~P B ) -> ( B \ ( I ` ( B \ ( K ` s ) ) ) ) = ( B \ ( I ` ( I ` ( B \ s ) ) ) ) ) |
51 |
41 50
|
eqtrd |
|- ( ( ph /\ s e. ~P B ) -> ( K ` ( K ` s ) ) = ( B \ ( I ` ( I ` ( B \ s ) ) ) ) ) |
52 |
51 43
|
eqeq12d |
|- ( ( ph /\ s e. ~P B ) -> ( ( K ` ( K ` s ) ) = ( K ` s ) <-> ( B \ ( I ` ( I ` ( B \ s ) ) ) ) = ( B \ ( I ` ( B \ s ) ) ) ) ) |
53 |
34 52
|
bitr4d |
|- ( ( ph /\ s e. ~P B ) -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( K ` ( K ` s ) ) = ( K ` s ) ) ) |
54 |
53
|
3adant3 |
|- ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( I ` ( B \ s ) ) ) = ( I ` ( B \ s ) ) <-> ( K ` ( K ` s ) ) = ( K ` s ) ) ) |
55 |
24 54
|
bitrd |
|- ( ( ph /\ s e. ~P B /\ t = ( B \ s ) ) -> ( ( I ` ( I ` t ) ) = ( I ` t ) <-> ( K ` ( K ` s ) ) = ( K ` s ) ) ) |
56 |
9 20 55
|
ralxfrd2 |
|- ( ph -> ( A. t e. ~P B ( I ` ( I ` t ) ) = ( I ` t ) <-> A. s e. ~P B ( K ` ( K ` s ) ) = ( K ` s ) ) ) |
57 |
7 56
|
syl5bb |
|- ( ph -> ( A. s e. ~P B ( I ` ( I ` s ) ) = ( I ` s ) <-> A. s e. ~P B ( K ` ( K ` s ) ) = ( K ` s ) ) ) |