Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
2 |
|
ntrcls.d |
|- D = ( O ` B ) |
3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
4 |
|
ntrclsfv.s |
|- ( ph -> S e. ~P B ) |
5 |
1 2 3
|
ntrclsfv2 |
|- ( ph -> ( D ` K ) = I ) |
6 |
5
|
fveq1d |
|- ( ph -> ( ( D ` K ) ` S ) = ( I ` S ) ) |
7 |
2 3
|
ntrclsbex |
|- ( ph -> B e. _V ) |
8 |
1 2 3
|
ntrclskex |
|- ( ph -> K e. ( ~P B ^m ~P B ) ) |
9 |
|
eqid |
|- ( D ` K ) = ( D ` K ) |
10 |
|
eqid |
|- ( ( D ` K ) ` S ) = ( ( D ` K ) ` S ) |
11 |
1 2 7 8 9 4 10
|
dssmapfv3d |
|- ( ph -> ( ( D ` K ) ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) |
12 |
6 11
|
eqtr3d |
|- ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) |