| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 |  | ntrclsfv.s |  |-  ( ph -> S e. ~P B ) | 
						
							| 5 | 1 2 3 | ntrclsfv2 |  |-  ( ph -> ( D ` K ) = I ) | 
						
							| 6 | 5 | fveq1d |  |-  ( ph -> ( ( D ` K ) ` S ) = ( I ` S ) ) | 
						
							| 7 | 2 3 | ntrclsbex |  |-  ( ph -> B e. _V ) | 
						
							| 8 | 1 2 3 | ntrclskex |  |-  ( ph -> K e. ( ~P B ^m ~P B ) ) | 
						
							| 9 |  | eqid |  |-  ( D ` K ) = ( D ` K ) | 
						
							| 10 |  | eqid |  |-  ( ( D ` K ) ` S ) = ( ( D ` K ) ` S ) | 
						
							| 11 | 1 2 7 8 9 4 10 | dssmapfv3d |  |-  ( ph -> ( ( D ` K ) ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) | 
						
							| 12 | 6 11 | eqtr3d |  |-  ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) |