Metamath Proof Explorer


Theorem ntrclsfv

Description: The value of the interior (closure) expressed in terms of the closure (interior). (Contributed by RP, 25-Jun-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
ntrclsfv.s
|- ( ph -> S e. ~P B )
Assertion ntrclsfv
|- ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 ntrclsfv.s
 |-  ( ph -> S e. ~P B )
5 1 2 3 ntrclsfv2
 |-  ( ph -> ( D ` K ) = I )
6 5 fveq1d
 |-  ( ph -> ( ( D ` K ) ` S ) = ( I ` S ) )
7 2 3 ntrclsbex
 |-  ( ph -> B e. _V )
8 1 2 3 ntrclskex
 |-  ( ph -> K e. ( ~P B ^m ~P B ) )
9 eqid
 |-  ( D ` K ) = ( D ` K )
10 eqid
 |-  ( ( D ` K ) ` S ) = ( ( D ` K ) ` S )
11 1 2 7 8 9 4 10 dssmapfv3d
 |-  ( ph -> ( ( D ` K ) ` S ) = ( B \ ( K ` ( B \ S ) ) ) )
12 6 11 eqtr3d
 |-  ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) )