Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
2 |
|
ntrcls.d |
|- D = ( O ` B ) |
3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
4 |
|
ntrclsfv.s |
|- ( ph -> S e. ~P B ) |
5 |
|
ntrclsfv.c |
|- ( ph -> C e. ~P B ) |
6 |
5
|
elpwid |
|- ( ph -> C C_ B ) |
7 |
|
dfss4 |
|- ( C C_ B <-> ( B \ ( B \ C ) ) = C ) |
8 |
6 7
|
sylib |
|- ( ph -> ( B \ ( B \ C ) ) = C ) |
9 |
8
|
eqcomd |
|- ( ph -> C = ( B \ ( B \ C ) ) ) |
10 |
9
|
eqeq2d |
|- ( ph -> ( ( B \ ( K ` ( B \ S ) ) ) = C <-> ( B \ ( K ` ( B \ S ) ) ) = ( B \ ( B \ C ) ) ) ) |
11 |
1 2 3 4
|
ntrclsfv |
|- ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) |
12 |
11
|
eqeq1d |
|- ( ph -> ( ( I ` S ) = C <-> ( B \ ( K ` ( B \ S ) ) ) = C ) ) |
13 |
1 2 3
|
ntrclskex |
|- ( ph -> K e. ( ~P B ^m ~P B ) ) |
14 |
|
elmapi |
|- ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B ) |
15 |
13 14
|
syl |
|- ( ph -> K : ~P B --> ~P B ) |
16 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ S ) e. ~P B ) |
17 |
15 16
|
ffvelrnd |
|- ( ph -> ( K ` ( B \ S ) ) e. ~P B ) |
18 |
17
|
elpwid |
|- ( ph -> ( K ` ( B \ S ) ) C_ B ) |
19 |
|
difssd |
|- ( ph -> ( B \ C ) C_ B ) |
20 |
|
rcompleq |
|- ( ( ( K ` ( B \ S ) ) C_ B /\ ( B \ C ) C_ B ) -> ( ( K ` ( B \ S ) ) = ( B \ C ) <-> ( B \ ( K ` ( B \ S ) ) ) = ( B \ ( B \ C ) ) ) ) |
21 |
18 19 20
|
syl2anc |
|- ( ph -> ( ( K ` ( B \ S ) ) = ( B \ C ) <-> ( B \ ( K ` ( B \ S ) ) ) = ( B \ ( B \ C ) ) ) ) |
22 |
10 12 21
|
3bitr4d |
|- ( ph -> ( ( I ` S ) = C <-> ( K ` ( B \ S ) ) = ( B \ C ) ) ) |