| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 |  | ntrclsfv.s |  |-  ( ph -> S e. ~P B ) | 
						
							| 5 |  | ntrclsfv.c |  |-  ( ph -> C e. ~P B ) | 
						
							| 6 | 5 | elpwid |  |-  ( ph -> C C_ B ) | 
						
							| 7 |  | dfss4 |  |-  ( C C_ B <-> ( B \ ( B \ C ) ) = C ) | 
						
							| 8 | 6 7 | sylib |  |-  ( ph -> ( B \ ( B \ C ) ) = C ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ph -> C = ( B \ ( B \ C ) ) ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ph -> ( ( B \ ( K ` ( B \ S ) ) ) = C <-> ( B \ ( K ` ( B \ S ) ) ) = ( B \ ( B \ C ) ) ) ) | 
						
							| 11 | 1 2 3 4 | ntrclsfv |  |-  ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( ph -> ( ( I ` S ) = C <-> ( B \ ( K ` ( B \ S ) ) ) = C ) ) | 
						
							| 13 | 1 2 3 | ntrclskex |  |-  ( ph -> K e. ( ~P B ^m ~P B ) ) | 
						
							| 14 |  | elmapi |  |-  ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> K : ~P B --> ~P B ) | 
						
							| 16 | 2 3 | ntrclsrcomplex |  |-  ( ph -> ( B \ S ) e. ~P B ) | 
						
							| 17 | 15 16 | ffvelcdmd |  |-  ( ph -> ( K ` ( B \ S ) ) e. ~P B ) | 
						
							| 18 | 17 | elpwid |  |-  ( ph -> ( K ` ( B \ S ) ) C_ B ) | 
						
							| 19 |  | difssd |  |-  ( ph -> ( B \ C ) C_ B ) | 
						
							| 20 |  | rcompleq |  |-  ( ( ( K ` ( B \ S ) ) C_ B /\ ( B \ C ) C_ B ) -> ( ( K ` ( B \ S ) ) = ( B \ C ) <-> ( B \ ( K ` ( B \ S ) ) ) = ( B \ ( B \ C ) ) ) ) | 
						
							| 21 | 18 19 20 | syl2anc |  |-  ( ph -> ( ( K ` ( B \ S ) ) = ( B \ C ) <-> ( B \ ( K ` ( B \ S ) ) ) = ( B \ ( B \ C ) ) ) ) | 
						
							| 22 | 10 12 21 | 3bitr4d |  |-  ( ph -> ( ( I ` S ) = C <-> ( K ` ( B \ S ) ) = ( B \ C ) ) ) |