Metamath Proof Explorer


Theorem ntrclsfveq1

Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
ntrclsfv.s
|- ( ph -> S e. ~P B )
ntrclsfv.c
|- ( ph -> C e. ~P B )
Assertion ntrclsfveq1
|- ( ph -> ( ( I ` S ) = C <-> ( K ` ( B \ S ) ) = ( B \ C ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 ntrclsfv.s
 |-  ( ph -> S e. ~P B )
5 ntrclsfv.c
 |-  ( ph -> C e. ~P B )
6 5 elpwid
 |-  ( ph -> C C_ B )
7 dfss4
 |-  ( C C_ B <-> ( B \ ( B \ C ) ) = C )
8 6 7 sylib
 |-  ( ph -> ( B \ ( B \ C ) ) = C )
9 8 eqcomd
 |-  ( ph -> C = ( B \ ( B \ C ) ) )
10 9 eqeq2d
 |-  ( ph -> ( ( B \ ( K ` ( B \ S ) ) ) = C <-> ( B \ ( K ` ( B \ S ) ) ) = ( B \ ( B \ C ) ) ) )
11 1 2 3 4 ntrclsfv
 |-  ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) )
12 11 eqeq1d
 |-  ( ph -> ( ( I ` S ) = C <-> ( B \ ( K ` ( B \ S ) ) ) = C ) )
13 1 2 3 ntrclskex
 |-  ( ph -> K e. ( ~P B ^m ~P B ) )
14 elmapi
 |-  ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B )
15 13 14 syl
 |-  ( ph -> K : ~P B --> ~P B )
16 2 3 ntrclsrcomplex
 |-  ( ph -> ( B \ S ) e. ~P B )
17 15 16 ffvelrnd
 |-  ( ph -> ( K ` ( B \ S ) ) e. ~P B )
18 17 elpwid
 |-  ( ph -> ( K ` ( B \ S ) ) C_ B )
19 difssd
 |-  ( ph -> ( B \ C ) C_ B )
20 rcompleq
 |-  ( ( ( K ` ( B \ S ) ) C_ B /\ ( B \ C ) C_ B ) -> ( ( K ` ( B \ S ) ) = ( B \ C ) <-> ( B \ ( K ` ( B \ S ) ) ) = ( B \ ( B \ C ) ) ) )
21 18 19 20 syl2anc
 |-  ( ph -> ( ( K ` ( B \ S ) ) = ( B \ C ) <-> ( B \ ( K ` ( B \ S ) ) ) = ( B \ ( B \ C ) ) ) )
22 10 12 21 3bitr4d
 |-  ( ph -> ( ( I ` S ) = C <-> ( K ` ( B \ S ) ) = ( B \ C ) ) )