| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
|- D = ( O ` B ) |
| 3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
| 4 |
|
ntrclsfv.s |
|- ( ph -> S e. ~P B ) |
| 5 |
|
ntrclsfv.c |
|- ( ph -> C e. ~P B ) |
| 6 |
1 2 3
|
ntrclsiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
| 7 |
|
elmapi |
|- ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) |
| 8 |
6 7
|
syl |
|- ( ph -> I : ~P B --> ~P B ) |
| 9 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ S ) e. ~P B ) |
| 10 |
8 9
|
ffvelcdmd |
|- ( ph -> ( I ` ( B \ S ) ) e. ~P B ) |
| 11 |
10
|
elpwid |
|- ( ph -> ( I ` ( B \ S ) ) C_ B ) |
| 12 |
5
|
elpwid |
|- ( ph -> C C_ B ) |
| 13 |
|
rcompleq |
|- ( ( ( I ` ( B \ S ) ) C_ B /\ C C_ B ) -> ( ( I ` ( B \ S ) ) = C <-> ( B \ ( I ` ( B \ S ) ) ) = ( B \ C ) ) ) |
| 14 |
11 12 13
|
syl2anc |
|- ( ph -> ( ( I ` ( B \ S ) ) = C <-> ( B \ ( I ` ( B \ S ) ) ) = ( B \ C ) ) ) |
| 15 |
1 2 3
|
ntrclsnvobr |
|- ( ph -> K D I ) |
| 16 |
1 2 15 4
|
ntrclsfv |
|- ( ph -> ( K ` S ) = ( B \ ( I ` ( B \ S ) ) ) ) |
| 17 |
16
|
eqeq1d |
|- ( ph -> ( ( K ` S ) = ( B \ C ) <-> ( B \ ( I ` ( B \ S ) ) ) = ( B \ C ) ) ) |
| 18 |
14 17
|
bitr4d |
|- ( ph -> ( ( I ` ( B \ S ) ) = C <-> ( K ` S ) = ( B \ C ) ) ) |