Metamath Proof Explorer


Theorem ntrclsfveq2

Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
ntrclsfv.s
|- ( ph -> S e. ~P B )
ntrclsfv.c
|- ( ph -> C e. ~P B )
Assertion ntrclsfveq2
|- ( ph -> ( ( I ` ( B \ S ) ) = C <-> ( K ` S ) = ( B \ C ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 ntrclsfv.s
 |-  ( ph -> S e. ~P B )
5 ntrclsfv.c
 |-  ( ph -> C e. ~P B )
6 1 2 3 ntrclsiex
 |-  ( ph -> I e. ( ~P B ^m ~P B ) )
7 elmapi
 |-  ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B )
8 6 7 syl
 |-  ( ph -> I : ~P B --> ~P B )
9 2 3 ntrclsrcomplex
 |-  ( ph -> ( B \ S ) e. ~P B )
10 8 9 ffvelrnd
 |-  ( ph -> ( I ` ( B \ S ) ) e. ~P B )
11 10 elpwid
 |-  ( ph -> ( I ` ( B \ S ) ) C_ B )
12 5 elpwid
 |-  ( ph -> C C_ B )
13 rcompleq
 |-  ( ( ( I ` ( B \ S ) ) C_ B /\ C C_ B ) -> ( ( I ` ( B \ S ) ) = C <-> ( B \ ( I ` ( B \ S ) ) ) = ( B \ C ) ) )
14 11 12 13 syl2anc
 |-  ( ph -> ( ( I ` ( B \ S ) ) = C <-> ( B \ ( I ` ( B \ S ) ) ) = ( B \ C ) ) )
15 1 2 3 ntrclsnvobr
 |-  ( ph -> K D I )
16 1 2 15 4 ntrclsfv
 |-  ( ph -> ( K ` S ) = ( B \ ( I ` ( B \ S ) ) ) )
17 16 eqeq1d
 |-  ( ph -> ( ( K ` S ) = ( B \ C ) <-> ( B \ ( I ` ( B \ S ) ) ) = ( B \ C ) ) )
18 14 17 bitr4d
 |-  ( ph -> ( ( I ` ( B \ S ) ) = C <-> ( K ` S ) = ( B \ C ) ) )