Metamath Proof Explorer


Theorem ntrclsfveq

Description: If interior and closure functions are related then equality of a pair of function values is equivalent to equality of a pair of the other function's values. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
ntrclsfv.s
|- ( ph -> S e. ~P B )
ntrclsfv.t
|- ( ph -> T e. ~P B )
Assertion ntrclsfveq
|- ( ph -> ( ( I ` S ) = ( I ` T ) <-> ( K ` ( B \ S ) ) = ( K ` ( B \ T ) ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 ntrclsfv.s
 |-  ( ph -> S e. ~P B )
5 ntrclsfv.t
 |-  ( ph -> T e. ~P B )
6 1 2 3 5 ntrclsfv
 |-  ( ph -> ( I ` T ) = ( B \ ( K ` ( B \ T ) ) ) )
7 6 eqeq2d
 |-  ( ph -> ( ( I ` S ) = ( I ` T ) <-> ( I ` S ) = ( B \ ( K ` ( B \ T ) ) ) ) )
8 2 3 ntrclsrcomplex
 |-  ( ph -> ( B \ ( K ` ( B \ T ) ) ) e. ~P B )
9 1 2 3 4 8 ntrclsfveq1
 |-  ( ph -> ( ( I ` S ) = ( B \ ( K ` ( B \ T ) ) ) <-> ( K ` ( B \ S ) ) = ( B \ ( B \ ( K ` ( B \ T ) ) ) ) ) )
10 1 2 3 ntrclskex
 |-  ( ph -> K e. ( ~P B ^m ~P B ) )
11 elmapi
 |-  ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B )
12 10 11 syl
 |-  ( ph -> K : ~P B --> ~P B )
13 2 3 ntrclsrcomplex
 |-  ( ph -> ( B \ T ) e. ~P B )
14 12 13 ffvelrnd
 |-  ( ph -> ( K ` ( B \ T ) ) e. ~P B )
15 14 elpwid
 |-  ( ph -> ( K ` ( B \ T ) ) C_ B )
16 dfss4
 |-  ( ( K ` ( B \ T ) ) C_ B <-> ( B \ ( B \ ( K ` ( B \ T ) ) ) ) = ( K ` ( B \ T ) ) )
17 15 16 sylib
 |-  ( ph -> ( B \ ( B \ ( K ` ( B \ T ) ) ) ) = ( K ` ( B \ T ) ) )
18 17 eqeq2d
 |-  ( ph -> ( ( K ` ( B \ S ) ) = ( B \ ( B \ ( K ` ( B \ T ) ) ) ) <-> ( K ` ( B \ S ) ) = ( K ` ( B \ T ) ) ) )
19 7 9 18 3bitrd
 |-  ( ph -> ( ( I ` S ) = ( I ` T ) <-> ( K ` ( B \ S ) ) = ( K ` ( B \ T ) ) ) )