| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 |  | ntrclsfv.s |  |-  ( ph -> S e. ~P B ) | 
						
							| 5 |  | ntrclsfv.t |  |-  ( ph -> T e. ~P B ) | 
						
							| 6 | 1 2 3 4 | ntrclsfv |  |-  ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) | 
						
							| 7 | 1 2 3 5 | ntrclsfv |  |-  ( ph -> ( I ` T ) = ( B \ ( K ` ( B \ T ) ) ) ) | 
						
							| 8 | 6 7 | sseq12d |  |-  ( ph -> ( ( I ` S ) C_ ( I ` T ) <-> ( B \ ( K ` ( B \ S ) ) ) C_ ( B \ ( K ` ( B \ T ) ) ) ) ) | 
						
							| 9 | 1 2 3 | ntrclskex |  |-  ( ph -> K e. ( ~P B ^m ~P B ) ) | 
						
							| 10 | 9 | ancli |  |-  ( ph -> ( ph /\ K e. ( ~P B ^m ~P B ) ) ) | 
						
							| 11 |  | elmapi |  |-  ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> K : ~P B --> ~P B ) | 
						
							| 13 | 2 3 | ntrclsrcomplex |  |-  ( ph -> ( B \ T ) e. ~P B ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( B \ T ) e. ~P B ) | 
						
							| 15 | 12 14 | ffvelcdmd |  |-  ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( K ` ( B \ T ) ) e. ~P B ) | 
						
							| 16 | 15 | elpwid |  |-  ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( K ` ( B \ T ) ) C_ B ) | 
						
							| 17 | 2 3 | ntrclsrcomplex |  |-  ( ph -> ( B \ S ) e. ~P B ) | 
						
							| 18 | 17 | adantr |  |-  ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( B \ S ) e. ~P B ) | 
						
							| 19 | 12 18 | ffvelcdmd |  |-  ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( K ` ( B \ S ) ) e. ~P B ) | 
						
							| 20 | 19 | elpwid |  |-  ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( K ` ( B \ S ) ) C_ B ) | 
						
							| 21 | 16 20 | jca |  |-  ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( ( K ` ( B \ T ) ) C_ B /\ ( K ` ( B \ S ) ) C_ B ) ) | 
						
							| 22 |  | sscon34b |  |-  ( ( ( K ` ( B \ T ) ) C_ B /\ ( K ` ( B \ S ) ) C_ B ) -> ( ( K ` ( B \ T ) ) C_ ( K ` ( B \ S ) ) <-> ( B \ ( K ` ( B \ S ) ) ) C_ ( B \ ( K ` ( B \ T ) ) ) ) ) | 
						
							| 23 | 10 21 22 | 3syl |  |-  ( ph -> ( ( K ` ( B \ T ) ) C_ ( K ` ( B \ S ) ) <-> ( B \ ( K ` ( B \ S ) ) ) C_ ( B \ ( K ` ( B \ T ) ) ) ) ) | 
						
							| 24 | 8 23 | bitr4d |  |-  ( ph -> ( ( I ` S ) C_ ( I ` T ) <-> ( K ` ( B \ T ) ) C_ ( K ` ( B \ S ) ) ) ) |