| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
|- D = ( O ` B ) |
| 3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
| 4 |
|
ntrclsfv.s |
|- ( ph -> S e. ~P B ) |
| 5 |
|
ntrclsfv.t |
|- ( ph -> T e. ~P B ) |
| 6 |
1 2 3 4
|
ntrclsfv |
|- ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) |
| 7 |
1 2 3 5
|
ntrclsfv |
|- ( ph -> ( I ` T ) = ( B \ ( K ` ( B \ T ) ) ) ) |
| 8 |
6 7
|
sseq12d |
|- ( ph -> ( ( I ` S ) C_ ( I ` T ) <-> ( B \ ( K ` ( B \ S ) ) ) C_ ( B \ ( K ` ( B \ T ) ) ) ) ) |
| 9 |
1 2 3
|
ntrclskex |
|- ( ph -> K e. ( ~P B ^m ~P B ) ) |
| 10 |
9
|
ancli |
|- ( ph -> ( ph /\ K e. ( ~P B ^m ~P B ) ) ) |
| 11 |
|
elmapi |
|- ( K e. ( ~P B ^m ~P B ) -> K : ~P B --> ~P B ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> K : ~P B --> ~P B ) |
| 13 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ T ) e. ~P B ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( B \ T ) e. ~P B ) |
| 15 |
12 14
|
ffvelcdmd |
|- ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( K ` ( B \ T ) ) e. ~P B ) |
| 16 |
15
|
elpwid |
|- ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( K ` ( B \ T ) ) C_ B ) |
| 17 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ S ) e. ~P B ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( B \ S ) e. ~P B ) |
| 19 |
12 18
|
ffvelcdmd |
|- ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( K ` ( B \ S ) ) e. ~P B ) |
| 20 |
19
|
elpwid |
|- ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( K ` ( B \ S ) ) C_ B ) |
| 21 |
16 20
|
jca |
|- ( ( ph /\ K e. ( ~P B ^m ~P B ) ) -> ( ( K ` ( B \ T ) ) C_ B /\ ( K ` ( B \ S ) ) C_ B ) ) |
| 22 |
|
sscon34b |
|- ( ( ( K ` ( B \ T ) ) C_ B /\ ( K ` ( B \ S ) ) C_ B ) -> ( ( K ` ( B \ T ) ) C_ ( K ` ( B \ S ) ) <-> ( B \ ( K ` ( B \ S ) ) ) C_ ( B \ ( K ` ( B \ T ) ) ) ) ) |
| 23 |
10 21 22
|
3syl |
|- ( ph -> ( ( K ` ( B \ T ) ) C_ ( K ` ( B \ S ) ) <-> ( B \ ( K ` ( B \ S ) ) ) C_ ( B \ ( K ` ( B \ T ) ) ) ) ) |
| 24 |
8 23
|
bitr4d |
|- ( ph -> ( ( I ` S ) C_ ( I ` T ) <-> ( K ` ( B \ T ) ) C_ ( K ` ( B \ S ) ) ) ) |