Metamath Proof Explorer


Theorem ntrclsss

Description: If interior and closure functions are related then a subset relation of a pair of function values is equivalent to subset relation of a pair of the other function's values. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
ntrclsfv.s φ S 𝒫 B
ntrclsfv.t φ T 𝒫 B
Assertion ntrclsss φ I S I T K B T K B S

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 ntrclsfv.s φ S 𝒫 B
5 ntrclsfv.t φ T 𝒫 B
6 1 2 3 4 ntrclsfv φ I S = B K B S
7 1 2 3 5 ntrclsfv φ I T = B K B T
8 6 7 sseq12d φ I S I T B K B S B K B T
9 1 2 3 ntrclskex φ K 𝒫 B 𝒫 B
10 9 ancli φ φ K 𝒫 B 𝒫 B
11 elmapi K 𝒫 B 𝒫 B K : 𝒫 B 𝒫 B
12 11 adantl φ K 𝒫 B 𝒫 B K : 𝒫 B 𝒫 B
13 2 3 ntrclsrcomplex φ B T 𝒫 B
14 13 adantr φ K 𝒫 B 𝒫 B B T 𝒫 B
15 12 14 ffvelrnd φ K 𝒫 B 𝒫 B K B T 𝒫 B
16 15 elpwid φ K 𝒫 B 𝒫 B K B T B
17 2 3 ntrclsrcomplex φ B S 𝒫 B
18 17 adantr φ K 𝒫 B 𝒫 B B S 𝒫 B
19 12 18 ffvelrnd φ K 𝒫 B 𝒫 B K B S 𝒫 B
20 19 elpwid φ K 𝒫 B 𝒫 B K B S B
21 16 20 jca φ K 𝒫 B 𝒫 B K B T B K B S B
22 sscon34b K B T B K B S B K B T K B S B K B S B K B T
23 10 21 22 3syl φ K B T K B S B K B S B K B T
24 8 23 bitr4d φ I S I T K B T K B S