Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
4 |
|
ntrclsfv.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
5 |
|
ntrclsfv.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝒫 𝐵 ) |
6 |
1 2 3 4
|
ntrclsfv |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |
7 |
1 2 3 5
|
ntrclsfv |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑇 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ) ) |
8 |
6 7
|
sseq12d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑆 ) ⊆ ( 𝐼 ‘ 𝑇 ) ↔ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ) ) ) |
9 |
1 2 3
|
ntrclskex |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
10 |
9
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) ) |
11 |
|
elmapi |
⊢ ( 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐾 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → 𝐾 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
13 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑇 ) ∈ 𝒫 𝐵 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( 𝐵 ∖ 𝑇 ) ∈ 𝒫 𝐵 ) |
15 |
12 14
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ∈ 𝒫 𝐵 ) |
16 |
15
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ⊆ 𝐵 ) |
17 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ∈ 𝒫 𝐵 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( 𝐵 ∖ 𝑆 ) ∈ 𝒫 𝐵 ) |
19 |
12 18
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ∈ 𝒫 𝐵 ) |
20 |
19
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ⊆ 𝐵 ) |
21 |
16 20
|
jca |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) → ( ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ⊆ 𝐵 ∧ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ⊆ 𝐵 ) ) |
22 |
|
sscon34b |
⊢ ( ( ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ⊆ 𝐵 ∧ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ⊆ 𝐵 ) → ( ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ⊆ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ↔ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ) ) ) |
23 |
10 21 22
|
3syl |
⊢ ( 𝜑 → ( ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ⊆ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ↔ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ) ) ) |
24 |
8 23
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑆 ) ⊆ ( 𝐼 ‘ 𝑇 ) ↔ ( 𝐾 ‘ ( 𝐵 ∖ 𝑇 ) ) ⊆ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |