Metamath Proof Explorer


Theorem ntrclsfv

Description: The value of the interior (closure) expressed in terms of the closure (interior). (Contributed by RP, 25-Jun-2021)

Ref Expression
Hypotheses ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
ntrcls.d 𝐷 = ( 𝑂𝐵 )
ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
ntrclsfv.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
Assertion ntrclsfv ( 𝜑 → ( 𝐼𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
2 ntrcls.d 𝐷 = ( 𝑂𝐵 )
3 ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
4 ntrclsfv.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
5 1 2 3 ntrclsfv2 ( 𝜑 → ( 𝐷𝐾 ) = 𝐼 )
6 5 fveq1d ( 𝜑 → ( ( 𝐷𝐾 ) ‘ 𝑆 ) = ( 𝐼𝑆 ) )
7 2 3 ntrclsbex ( 𝜑𝐵 ∈ V )
8 1 2 3 ntrclskex ( 𝜑𝐾 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
9 eqid ( 𝐷𝐾 ) = ( 𝐷𝐾 )
10 eqid ( ( 𝐷𝐾 ) ‘ 𝑆 ) = ( ( 𝐷𝐾 ) ‘ 𝑆 )
11 1 2 7 8 9 4 10 dssmapfv3d ( 𝜑 → ( ( 𝐷𝐾 ) ‘ 𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) )
12 6 11 eqtr3d ( 𝜑 → ( 𝐼𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) )