Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
4 |
|
ntrclsfv.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
5 |
1 2 3
|
ntrclsfv2 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐾 ) = 𝐼 ) |
6 |
5
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝐼 ‘ 𝑆 ) ) |
7 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
8 |
1 2 3
|
ntrclskex |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
9 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐾 ) = ( 𝐷 ‘ 𝐾 ) |
10 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) = ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) |
11 |
1 2 7 8 9 4 10
|
dssmapfv3d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |
12 |
6 11
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |