| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
| 3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
| 4 |
|
ntrclsfv.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
| 5 |
|
ntrclsfv.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝒫 𝐵 ) |
| 6 |
5
|
elpwid |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
| 7 |
|
dfss4 |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝐶 ) ) = 𝐶 ) |
| 8 |
6 7
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∖ ( 𝐵 ∖ 𝐶 ) ) = 𝐶 ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝜑 → 𝐶 = ( 𝐵 ∖ ( 𝐵 ∖ 𝐶 ) ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) = 𝐶 ↔ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝐶 ) ) ) ) |
| 11 |
1 2 3 4
|
ntrclsfv |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑆 ) = 𝐶 ↔ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) = 𝐶 ) ) |
| 13 |
1 2 3
|
ntrclskex |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 14 |
|
elmapi |
⊢ ( 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐾 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐾 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 16 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ∈ 𝒫 𝐵 ) |
| 17 |
15 16
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ∈ 𝒫 𝐵 ) |
| 18 |
17
|
elpwid |
⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ⊆ 𝐵 ) |
| 19 |
|
difssd |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 ) |
| 20 |
|
rcompleq |
⊢ ( ( ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ⊆ 𝐵 ∧ ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 ) → ( ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) = ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝐶 ) ) ) ) |
| 21 |
18 19 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) = ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝐶 ) ) ) ) |
| 22 |
10 12 21
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑆 ) = 𝐶 ↔ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) = ( 𝐵 ∖ 𝐶 ) ) ) |