Metamath Proof Explorer


Theorem ntrclsfveq1

Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
ntrclsfv.s φ S 𝒫 B
ntrclsfv.c φ C 𝒫 B
Assertion ntrclsfveq1 φ I S = C K B S = B C

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 ntrclsfv.s φ S 𝒫 B
5 ntrclsfv.c φ C 𝒫 B
6 5 elpwid φ C B
7 dfss4 C B B B C = C
8 6 7 sylib φ B B C = C
9 8 eqcomd φ C = B B C
10 9 eqeq2d φ B K B S = C B K B S = B B C
11 1 2 3 4 ntrclsfv φ I S = B K B S
12 11 eqeq1d φ I S = C B K B S = C
13 1 2 3 ntrclskex φ K 𝒫 B 𝒫 B
14 elmapi K 𝒫 B 𝒫 B K : 𝒫 B 𝒫 B
15 13 14 syl φ K : 𝒫 B 𝒫 B
16 2 3 ntrclsrcomplex φ B S 𝒫 B
17 15 16 ffvelrnd φ K B S 𝒫 B
18 17 elpwid φ K B S B
19 difssd φ B C B
20 rcompleq K B S B B C B K B S = B C B K B S = B B C
21 18 19 20 syl2anc φ K B S = B C B K B S = B B C
22 10 12 21 3bitr4d φ I S = C K B S = B C