Metamath Proof Explorer


Theorem ntrclsfv

Description: The value of the interior (closure) expressed in terms of the closure (interior). (Contributed by RP, 25-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
ntrclsfv.s φ S 𝒫 B
Assertion ntrclsfv φ I S = B K B S

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 ntrclsfv.s φ S 𝒫 B
5 1 2 3 ntrclsfv2 φ D K = I
6 5 fveq1d φ D K S = I S
7 2 3 ntrclsbex φ B V
8 1 2 3 ntrclskex φ K 𝒫 B 𝒫 B
9 eqid D K = D K
10 eqid D K S = D K S
11 1 2 7 8 9 4 10 dssmapfv3d φ D K S = B K B S
12 6 11 eqtr3d φ I S = B K B S