Metamath Proof Explorer


Theorem ntrclsfveq2

Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
ntrclsfv.s φ S 𝒫 B
ntrclsfv.c φ C 𝒫 B
Assertion ntrclsfveq2 φ I B S = C K S = B C

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 ntrclsfv.s φ S 𝒫 B
5 ntrclsfv.c φ C 𝒫 B
6 1 2 3 ntrclsiex φ I 𝒫 B 𝒫 B
7 elmapi I 𝒫 B 𝒫 B I : 𝒫 B 𝒫 B
8 6 7 syl φ I : 𝒫 B 𝒫 B
9 2 3 ntrclsrcomplex φ B S 𝒫 B
10 8 9 ffvelrnd φ I B S 𝒫 B
11 10 elpwid φ I B S B
12 5 elpwid φ C B
13 rcompleq I B S B C B I B S = C B I B S = B C
14 11 12 13 syl2anc φ I B S = C B I B S = B C
15 1 2 3 ntrclsnvobr φ K D I
16 1 2 15 4 ntrclsfv φ K S = B I B S
17 16 eqeq1d φ K S = B C B I B S = B C
18 14 17 bitr4d φ I B S = C K S = B C