Metamath Proof Explorer


Theorem ntrclsfveq2

Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
ntrcls.d 𝐷 = ( 𝑂𝐵 )
ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
ntrclsfv.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
ntrclsfv.c ( 𝜑𝐶 ∈ 𝒫 𝐵 )
Assertion ntrclsfveq2 ( 𝜑 → ( ( 𝐼 ‘ ( 𝐵𝑆 ) ) = 𝐶 ↔ ( 𝐾𝑆 ) = ( 𝐵𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
2 ntrcls.d 𝐷 = ( 𝑂𝐵 )
3 ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
4 ntrclsfv.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
5 ntrclsfv.c ( 𝜑𝐶 ∈ 𝒫 𝐵 )
6 1 2 3 ntrclsiex ( 𝜑𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
7 elmapi ( 𝐼 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
8 6 7 syl ( 𝜑𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 )
9 2 3 ntrclsrcomplex ( 𝜑 → ( 𝐵𝑆 ) ∈ 𝒫 𝐵 )
10 8 9 ffvelrnd ( 𝜑 → ( 𝐼 ‘ ( 𝐵𝑆 ) ) ∈ 𝒫 𝐵 )
11 10 elpwid ( 𝜑 → ( 𝐼 ‘ ( 𝐵𝑆 ) ) ⊆ 𝐵 )
12 5 elpwid ( 𝜑𝐶𝐵 )
13 rcompleq ( ( ( 𝐼 ‘ ( 𝐵𝑆 ) ) ⊆ 𝐵𝐶𝐵 ) → ( ( 𝐼 ‘ ( 𝐵𝑆 ) ) = 𝐶 ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑆 ) ) ) = ( 𝐵𝐶 ) ) )
14 11 12 13 syl2anc ( 𝜑 → ( ( 𝐼 ‘ ( 𝐵𝑆 ) ) = 𝐶 ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑆 ) ) ) = ( 𝐵𝐶 ) ) )
15 1 2 3 ntrclsnvobr ( 𝜑𝐾 𝐷 𝐼 )
16 1 2 15 4 ntrclsfv ( 𝜑 → ( 𝐾𝑆 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑆 ) ) ) )
17 16 eqeq1d ( 𝜑 → ( ( 𝐾𝑆 ) = ( 𝐵𝐶 ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵𝑆 ) ) ) = ( 𝐵𝐶 ) ) )
18 14 17 bitr4d ( 𝜑 → ( ( 𝐼 ‘ ( 𝐵𝑆 ) ) = 𝐶 ↔ ( 𝐾𝑆 ) = ( 𝐵𝐶 ) ) )