Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
4 |
|
ntrclsfv.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
5 |
|
ntrclsfv.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝒫 𝐵 ) |
6 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
7 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
9 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑆 ) ∈ 𝒫 𝐵 ) |
10 |
8 9
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) ∈ 𝒫 𝐵 ) |
11 |
10
|
elpwid |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) ⊆ 𝐵 ) |
12 |
5
|
elpwid |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
13 |
|
rcompleq |
⊢ ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) = 𝐶 ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) ) = ( 𝐵 ∖ 𝐶 ) ) ) |
14 |
11 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) = 𝐶 ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) ) = ( 𝐵 ∖ 𝐶 ) ) ) |
15 |
1 2 3
|
ntrclsnvobr |
⊢ ( 𝜑 → 𝐾 𝐷 𝐼 ) |
16 |
1 2 15 4
|
ntrclsfv |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑆 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐾 ‘ 𝑆 ) = ( 𝐵 ∖ 𝐶 ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) ) = ( 𝐵 ∖ 𝐶 ) ) ) |
18 |
14 17
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑆 ) ) = 𝐶 ↔ ( 𝐾 ‘ 𝑆 ) = ( 𝐵 ∖ 𝐶 ) ) ) |