| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o | ⊢ 𝑂  =  ( 𝑖  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑖  ↑m  𝒫  𝑖 )  ↦  ( 𝑗  ∈  𝒫  𝑖  ↦  ( 𝑖  ∖  ( 𝑘 ‘ ( 𝑖  ∖  𝑗 ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d | ⊢ 𝐷  =  ( 𝑂 ‘ 𝐵 ) | 
						
							| 3 |  | ntrcls.r | ⊢ ( 𝜑  →  𝐼 𝐷 𝐾 ) | 
						
							| 4 |  | ntrclsfv.s | ⊢ ( 𝜑  →  𝑆  ∈  𝒫  𝐵 ) | 
						
							| 5 |  | ntrclsfv.c | ⊢ ( 𝜑  →  𝐶  ∈  𝒫  𝐵 ) | 
						
							| 6 | 1 2 3 | ntrclsiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 7 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 9 | 2 3 | ntrclsrcomplex | ⊢ ( 𝜑  →  ( 𝐵  ∖  𝑆 )  ∈  𝒫  𝐵 ) | 
						
							| 10 | 8 9 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) )  ∈  𝒫  𝐵 ) | 
						
							| 11 | 10 | elpwid | ⊢ ( 𝜑  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) )  ⊆  𝐵 ) | 
						
							| 12 | 5 | elpwid | ⊢ ( 𝜑  →  𝐶  ⊆  𝐵 ) | 
						
							| 13 |  | rcompleq | ⊢ ( ( ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) )  ⊆  𝐵  ∧  𝐶  ⊆  𝐵 )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) )  =  𝐶  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) ) )  =  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 14 | 11 12 13 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) )  =  𝐶  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) ) )  =  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 15 | 1 2 3 | ntrclsnvobr | ⊢ ( 𝜑  →  𝐾 𝐷 𝐼 ) | 
						
							| 16 | 1 2 15 4 | ntrclsfv | ⊢ ( 𝜑  →  ( 𝐾 ‘ 𝑆 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) ) ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝐾 ‘ 𝑆 )  =  ( 𝐵  ∖  𝐶 )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) ) )  =  ( 𝐵  ∖  𝐶 ) ) ) | 
						
							| 18 | 14 17 | bitr4d | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑆 ) )  =  𝐶  ↔  ( 𝐾 ‘ 𝑆 )  =  ( 𝐵  ∖  𝐶 ) ) ) |