Metamath Proof Explorer


Theorem ntrclsfveq

Description: If interior and closure functions are related then equality of a pair of function values is equivalent to equality of a pair of the other function's values. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
ntrclsfv.s φ S 𝒫 B
ntrclsfv.t φ T 𝒫 B
Assertion ntrclsfveq φ I S = I T K B S = K B T

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 ntrclsfv.s φ S 𝒫 B
5 ntrclsfv.t φ T 𝒫 B
6 1 2 3 5 ntrclsfv φ I T = B K B T
7 6 eqeq2d φ I S = I T I S = B K B T
8 2 3 ntrclsrcomplex φ B K B T 𝒫 B
9 1 2 3 4 8 ntrclsfveq1 φ I S = B K B T K B S = B B K B T
10 1 2 3 ntrclskex φ K 𝒫 B 𝒫 B
11 elmapi K 𝒫 B 𝒫 B K : 𝒫 B 𝒫 B
12 10 11 syl φ K : 𝒫 B 𝒫 B
13 2 3 ntrclsrcomplex φ B T 𝒫 B
14 12 13 ffvelrnd φ K B T 𝒫 B
15 14 elpwid φ K B T B
16 dfss4 K B T B B B K B T = K B T
17 15 16 sylib φ B B K B T = K B T
18 17 eqeq2d φ K B S = B B K B T K B S = K B T
19 7 9 18 3bitrd φ I S = I T K B S = K B T