| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
| 3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
| 4 |
|
ntrclslem0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑡 ) ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) ↔ 𝑋 ∈ ( 𝐼 ‘ 𝑡 ) ) ) |
| 7 |
6
|
cbvrexvw |
⊢ ( ∃ 𝑠 ∈ 𝒫 𝐵 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) ↔ ∃ 𝑡 ∈ 𝒫 𝐵 𝑋 ∈ ( 𝐼 ‘ 𝑡 ) ) |
| 8 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 10 |
2 3
|
ntrclsrcomplex |
⊢ ( 𝜑 → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 12 |
|
difeq2 |
⊢ ( 𝑠 = ( 𝐵 ∖ 𝑡 ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) ) |
| 14 |
|
elpwi |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → 𝑡 ⊆ 𝐵 ) |
| 15 |
|
dfss4 |
⊢ ( 𝑡 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
| 16 |
14 15
|
sylib |
⊢ ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
| 17 |
16
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑡 ) ) = 𝑡 ) |
| 18 |
13 17
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑡 ) ) → 𝑡 = ( 𝐵 ∖ 𝑠 ) ) |
| 19 |
11 18
|
rspcedeq2vd |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑡 = ( 𝐵 ∖ 𝑠 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
| 21 |
20
|
eleq2d |
⊢ ( 𝑡 = ( 𝐵 ∖ 𝑠 ) → ( 𝑋 ∈ ( 𝐼 ‘ 𝑡 ) ↔ 𝑋 ∈ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 22 |
21
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( 𝑋 ∈ ( 𝐼 ‘ 𝑡 ) ↔ 𝑋 ∈ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 23 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐼 𝐷 𝐾 ) |
| 24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 26 |
1 2 23 24 25
|
ntrclselnel2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝑋 ∈ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |
| 27 |
26
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( 𝑋 ∈ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |
| 28 |
22 27
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑡 = ( 𝐵 ∖ 𝑠 ) ) → ( 𝑋 ∈ ( 𝐼 ‘ 𝑡 ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |
| 29 |
9 19 28
|
rexxfrd2 |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝒫 𝐵 𝑋 ∈ ( 𝐼 ‘ 𝑡 ) ↔ ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |
| 30 |
7 29
|
bitrid |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝒫 𝐵 𝑋 ∈ ( 𝐼 ‘ 𝑠 ) ↔ ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ ( 𝐾 ‘ 𝑠 ) ) ) |