Metamath Proof Explorer


Theorem ntrclsneine0lem

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021)

Ref Expression
Hypotheses ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
ntrcls.d 𝐷 = ( 𝑂𝐵 )
ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
ntrclslem0.x ( 𝜑𝑋𝐵 )
Assertion ntrclsneine0lem ( 𝜑 → ( ∃ 𝑠 ∈ 𝒫 𝐵 𝑋 ∈ ( 𝐼𝑠 ) ↔ ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ ( 𝐾𝑠 ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
2 ntrcls.d 𝐷 = ( 𝑂𝐵 )
3 ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
4 ntrclslem0.x ( 𝜑𝑋𝐵 )
5 fveq2 ( 𝑠 = 𝑡 → ( 𝐼𝑠 ) = ( 𝐼𝑡 ) )
6 5 eleq2d ( 𝑠 = 𝑡 → ( 𝑋 ∈ ( 𝐼𝑠 ) ↔ 𝑋 ∈ ( 𝐼𝑡 ) ) )
7 6 cbvrexvw ( ∃ 𝑠 ∈ 𝒫 𝐵 𝑋 ∈ ( 𝐼𝑠 ) ↔ ∃ 𝑡 ∈ 𝒫 𝐵 𝑋 ∈ ( 𝐼𝑡 ) )
8 2 3 ntrclsrcomplex ( 𝜑 → ( 𝐵𝑠 ) ∈ 𝒫 𝐵 )
9 8 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵𝑠 ) ∈ 𝒫 𝐵 )
10 2 3 ntrclsrcomplex ( 𝜑 → ( 𝐵𝑡 ) ∈ 𝒫 𝐵 )
11 10 adantr ( ( 𝜑𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵𝑡 ) ∈ 𝒫 𝐵 )
12 difeq2 ( 𝑠 = ( 𝐵𝑡 ) → ( 𝐵𝑠 ) = ( 𝐵 ∖ ( 𝐵𝑡 ) ) )
13 12 adantl ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑠 = ( 𝐵𝑡 ) ) → ( 𝐵𝑠 ) = ( 𝐵 ∖ ( 𝐵𝑡 ) ) )
14 elpwi ( 𝑡 ∈ 𝒫 𝐵𝑡𝐵 )
15 dfss4 ( 𝑡𝐵 ↔ ( 𝐵 ∖ ( 𝐵𝑡 ) ) = 𝑡 )
16 14 15 sylib ( 𝑡 ∈ 𝒫 𝐵 → ( 𝐵 ∖ ( 𝐵𝑡 ) ) = 𝑡 )
17 16 ad2antlr ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑠 = ( 𝐵𝑡 ) ) → ( 𝐵 ∖ ( 𝐵𝑡 ) ) = 𝑡 )
18 13 17 eqtr2d ( ( ( 𝜑𝑡 ∈ 𝒫 𝐵 ) ∧ 𝑠 = ( 𝐵𝑡 ) ) → 𝑡 = ( 𝐵𝑠 ) )
19 11 18 rspcedeq2vd ( ( 𝜑𝑡 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑡 = ( 𝐵𝑠 ) )
20 fveq2 ( 𝑡 = ( 𝐵𝑠 ) → ( 𝐼𝑡 ) = ( 𝐼 ‘ ( 𝐵𝑠 ) ) )
21 20 eleq2d ( 𝑡 = ( 𝐵𝑠 ) → ( 𝑋 ∈ ( 𝐼𝑡 ) ↔ 𝑋 ∈ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) )
22 21 3ad2ant3 ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 = ( 𝐵𝑠 ) ) → ( 𝑋 ∈ ( 𝐼𝑡 ) ↔ 𝑋 ∈ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ) )
23 3 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝐼 𝐷 𝐾 )
24 4 adantr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝑋𝐵 )
25 simpr ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → 𝑠 ∈ 𝒫 𝐵 )
26 1 2 23 24 25 ntrclselnel2 ( ( 𝜑𝑠 ∈ 𝒫 𝐵 ) → ( 𝑋 ∈ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ↔ ¬ 𝑋 ∈ ( 𝐾𝑠 ) ) )
27 26 3adant3 ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 = ( 𝐵𝑠 ) ) → ( 𝑋 ∈ ( 𝐼 ‘ ( 𝐵𝑠 ) ) ↔ ¬ 𝑋 ∈ ( 𝐾𝑠 ) ) )
28 22 27 bitrd ( ( 𝜑𝑠 ∈ 𝒫 𝐵𝑡 = ( 𝐵𝑠 ) ) → ( 𝑋 ∈ ( 𝐼𝑡 ) ↔ ¬ 𝑋 ∈ ( 𝐾𝑠 ) ) )
29 9 19 28 rexxfrd2 ( 𝜑 → ( ∃ 𝑡 ∈ 𝒫 𝐵 𝑋 ∈ ( 𝐼𝑡 ) ↔ ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ ( 𝐾𝑠 ) ) )
30 7 29 syl5bb ( 𝜑 → ( ∃ 𝑠 ∈ 𝒫 𝐵 𝑋 ∈ ( 𝐼𝑠 ) ↔ ∃ 𝑠 ∈ 𝒫 𝐵 ¬ 𝑋 ∈ ( 𝐾𝑠 ) ) )