Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Richard Penner Exploring Topology via Seifert and Threlfall Generic Pseudoclosure Spaces, Pseudointerior Spaces, and Pseudoneighborhoods ntrclselnel2  
				
		 
		
			
		 
		Description:   If (pseudo-)interior and (pseudo-)closure functions are related by
             the duality operator then there is an equivalence between
             membership in interior of the complement of a set and
             non-membership in the closure of the set.  (Contributed by RP , 28-May-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ntrcls.o ⊢  𝑂   =  ( 𝑖   ∈  V  ↦  ( 𝑘   ∈  ( 𝒫  𝑖   ↑m   𝒫  𝑖  )  ↦  ( 𝑗   ∈  𝒫  𝑖   ↦  ( 𝑖   ∖  ( 𝑘  ‘ ( 𝑖   ∖  𝑗  ) ) ) ) ) )  
					
						ntrcls.d ⊢  𝐷   =  ( 𝑂  ‘ 𝐵  )  
					
						ntrcls.r ⊢  ( 𝜑   →  𝐼  𝐷  𝐾  )  
					
						ntrcls.x ⊢  ( 𝜑   →  𝑋   ∈  𝐵  )  
					
						ntrcls.s ⊢  ( 𝜑   →  𝑆   ∈  𝒫  𝐵  )  
				
					Assertion 
					ntrclselnel2 ⊢   ( 𝜑   →  ( 𝑋   ∈  ( 𝐼  ‘ ( 𝐵   ∖  𝑆  ) )  ↔  ¬  𝑋   ∈  ( 𝐾  ‘ 𝑆  ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ntrcls.o ⊢  𝑂   =  ( 𝑖   ∈  V  ↦  ( 𝑘   ∈  ( 𝒫  𝑖   ↑m   𝒫  𝑖  )  ↦  ( 𝑗   ∈  𝒫  𝑖   ↦  ( 𝑖   ∖  ( 𝑘  ‘ ( 𝑖   ∖  𝑗  ) ) ) ) ) )  
						
							2 
								
							 
							ntrcls.d ⊢  𝐷   =  ( 𝑂  ‘ 𝐵  )  
						
							3 
								
							 
							ntrcls.r ⊢  ( 𝜑   →  𝐼  𝐷  𝐾  )  
						
							4 
								
							 
							ntrcls.x ⊢  ( 𝜑   →  𝑋   ∈  𝐵  )  
						
							5 
								
							 
							ntrcls.s ⊢  ( 𝜑   →  𝑆   ∈  𝒫  𝐵  )  
						
							6 
								1  2  3 
							 
							ntrclsnvobr ⊢  ( 𝜑   →  𝐾  𝐷  𝐼  )  
						
							7 
								1  2  6  4  5 
							 
							ntrclselnel1 ⊢  ( 𝜑   →  ( 𝑋   ∈  ( 𝐾  ‘ 𝑆  )  ↔  ¬  𝑋   ∈  ( 𝐼  ‘ ( 𝐵   ∖  𝑆  ) ) ) )  
						
							8 
								7 
							 
							con2bid ⊢  ( 𝜑   →  ( 𝑋   ∈  ( 𝐼  ‘ ( 𝐵   ∖  𝑆  ) )  ↔  ¬  𝑋   ∈  ( 𝐾  ‘ 𝑆  ) ) )