Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
4 |
|
ntrcls.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
ntrcls.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝒫 𝐵 ) |
6 |
1 2 3
|
ntrclsfv2 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐾 ) = 𝐼 ) |
7 |
6
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( 𝐷 ‘ 𝐾 ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) = ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) ) |
9 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
10 |
1 2 3
|
ntrclskex |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
11 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐾 ) = ( 𝐷 ‘ 𝐾 ) |
12 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) = ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) |
13 |
1 2 9 10 11 5 12
|
dssmapfv3d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |
14 |
8 13
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |
15 |
14
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐼 ‘ 𝑆 ) ↔ 𝑋 ∈ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) ) |
16 |
|
eldif |
⊢ ( 𝑋 ∈ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ↔ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ↔ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) ) |
18 |
4 17
|
mpbirand |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |
19 |
15 18
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐼 ‘ 𝑆 ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵 ∖ 𝑆 ) ) ) ) |