| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o | ⊢ 𝑂  =  ( 𝑖  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑖  ↑m  𝒫  𝑖 )  ↦  ( 𝑗  ∈  𝒫  𝑖  ↦  ( 𝑖  ∖  ( 𝑘 ‘ ( 𝑖  ∖  𝑗 ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d | ⊢ 𝐷  =  ( 𝑂 ‘ 𝐵 ) | 
						
							| 3 |  | ntrcls.r | ⊢ ( 𝜑  →  𝐼 𝐷 𝐾 ) | 
						
							| 4 |  | ntrcls.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | ntrcls.s | ⊢ ( 𝜑  →  𝑆  ∈  𝒫  𝐵 ) | 
						
							| 6 | 1 2 3 | ntrclsfv2 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐾 )  =  𝐼 ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝜑  →  𝐼  =  ( 𝐷 ‘ 𝐾 ) ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑆 )  =  ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) ) | 
						
							| 9 | 2 3 | ntrclsbex | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 10 | 1 2 3 | ntrclskex | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝐷 ‘ 𝐾 )  =  ( 𝐷 ‘ 𝐾 ) | 
						
							| 12 |  | eqid | ⊢ ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 )  =  ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 ) | 
						
							| 13 | 1 2 9 10 11 5 12 | dssmapfv3d | ⊢ ( 𝜑  →  ( ( 𝐷 ‘ 𝐾 ) ‘ 𝑆 )  =  ( 𝐵  ∖  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) ) ) | 
						
							| 14 | 8 13 | eqtrd | ⊢ ( 𝜑  →  ( 𝐼 ‘ 𝑆 )  =  ( 𝐵  ∖  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐼 ‘ 𝑆 )  ↔  𝑋  ∈  ( 𝐵  ∖  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) ) ) ) | 
						
							| 16 |  | eldif | ⊢ ( 𝑋  ∈  ( 𝐵  ∖  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) )  ↔  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ∈  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) ) ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐵  ∖  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) )  ↔  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ∈  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) ) ) ) | 
						
							| 18 | 4 17 | mpbirand | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐵  ∖  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) )  ↔  ¬  𝑋  ∈  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) ) ) | 
						
							| 19 | 15 18 | bitrd | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐼 ‘ 𝑆 )  ↔  ¬  𝑋  ∈  ( 𝐾 ‘ ( 𝐵  ∖  𝑆 ) ) ) ) |