Metamath Proof Explorer


Theorem ntrclselnel1

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
ntrcls.d 𝐷 = ( 𝑂𝐵 )
ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
ntrcls.x ( 𝜑𝑋𝐵 )
ntrcls.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
Assertion ntrclselnel1 ( 𝜑 → ( 𝑋 ∈ ( 𝐼𝑆 ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖𝑗 ) ) ) ) ) )
2 ntrcls.d 𝐷 = ( 𝑂𝐵 )
3 ntrcls.r ( 𝜑𝐼 𝐷 𝐾 )
4 ntrcls.x ( 𝜑𝑋𝐵 )
5 ntrcls.s ( 𝜑𝑆 ∈ 𝒫 𝐵 )
6 1 2 3 ntrclsfv2 ( 𝜑 → ( 𝐷𝐾 ) = 𝐼 )
7 6 eqcomd ( 𝜑𝐼 = ( 𝐷𝐾 ) )
8 7 fveq1d ( 𝜑 → ( 𝐼𝑆 ) = ( ( 𝐷𝐾 ) ‘ 𝑆 ) )
9 2 3 ntrclsbex ( 𝜑𝐵 ∈ V )
10 1 2 3 ntrclskex ( 𝜑𝐾 ∈ ( 𝒫 𝐵m 𝒫 𝐵 ) )
11 eqid ( 𝐷𝐾 ) = ( 𝐷𝐾 )
12 eqid ( ( 𝐷𝐾 ) ‘ 𝑆 ) = ( ( 𝐷𝐾 ) ‘ 𝑆 )
13 1 2 9 10 11 5 12 dssmapfv3d ( 𝜑 → ( ( 𝐷𝐾 ) ‘ 𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) )
14 8 13 eqtrd ( 𝜑 → ( 𝐼𝑆 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) )
15 14 eleq2d ( 𝜑 → ( 𝑋 ∈ ( 𝐼𝑆 ) ↔ 𝑋 ∈ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) ) )
16 eldif ( 𝑋 ∈ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) ↔ ( 𝑋𝐵 ∧ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) )
17 16 a1i ( 𝜑 → ( 𝑋 ∈ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) ↔ ( 𝑋𝐵 ∧ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) ) )
18 4 17 mpbirand ( 𝜑 → ( 𝑋 ∈ ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) )
19 15 18 bitrd ( 𝜑 → ( 𝑋 ∈ ( 𝐼𝑆 ) ↔ ¬ 𝑋 ∈ ( 𝐾 ‘ ( 𝐵𝑆 ) ) ) )