| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
|- D = ( O ` B ) |
| 3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
| 4 |
|
ntrcls.x |
|- ( ph -> X e. B ) |
| 5 |
|
ntrcls.s |
|- ( ph -> S e. ~P B ) |
| 6 |
1 2 3
|
ntrclsfv2 |
|- ( ph -> ( D ` K ) = I ) |
| 7 |
6
|
eqcomd |
|- ( ph -> I = ( D ` K ) ) |
| 8 |
7
|
fveq1d |
|- ( ph -> ( I ` S ) = ( ( D ` K ) ` S ) ) |
| 9 |
2 3
|
ntrclsbex |
|- ( ph -> B e. _V ) |
| 10 |
1 2 3
|
ntrclskex |
|- ( ph -> K e. ( ~P B ^m ~P B ) ) |
| 11 |
|
eqid |
|- ( D ` K ) = ( D ` K ) |
| 12 |
|
eqid |
|- ( ( D ` K ) ` S ) = ( ( D ` K ) ` S ) |
| 13 |
1 2 9 10 11 5 12
|
dssmapfv3d |
|- ( ph -> ( ( D ` K ) ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) |
| 14 |
8 13
|
eqtrd |
|- ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) |
| 15 |
14
|
eleq2d |
|- ( ph -> ( X e. ( I ` S ) <-> X e. ( B \ ( K ` ( B \ S ) ) ) ) ) |
| 16 |
|
eldif |
|- ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> ( X e. B /\ -. X e. ( K ` ( B \ S ) ) ) ) |
| 17 |
16
|
a1i |
|- ( ph -> ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> ( X e. B /\ -. X e. ( K ` ( B \ S ) ) ) ) ) |
| 18 |
4 17
|
mpbirand |
|- ( ph -> ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> -. X e. ( K ` ( B \ S ) ) ) ) |
| 19 |
15 18
|
bitrd |
|- ( ph -> ( X e. ( I ` S ) <-> -. X e. ( K ` ( B \ S ) ) ) ) |