Metamath Proof Explorer


Theorem ntrclselnel1

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
ntrcls.x
|- ( ph -> X e. B )
ntrcls.s
|- ( ph -> S e. ~P B )
Assertion ntrclselnel1
|- ( ph -> ( X e. ( I ` S ) <-> -. X e. ( K ` ( B \ S ) ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 ntrcls.x
 |-  ( ph -> X e. B )
5 ntrcls.s
 |-  ( ph -> S e. ~P B )
6 1 2 3 ntrclsfv2
 |-  ( ph -> ( D ` K ) = I )
7 6 eqcomd
 |-  ( ph -> I = ( D ` K ) )
8 7 fveq1d
 |-  ( ph -> ( I ` S ) = ( ( D ` K ) ` S ) )
9 2 3 ntrclsbex
 |-  ( ph -> B e. _V )
10 1 2 3 ntrclskex
 |-  ( ph -> K e. ( ~P B ^m ~P B ) )
11 eqid
 |-  ( D ` K ) = ( D ` K )
12 eqid
 |-  ( ( D ` K ) ` S ) = ( ( D ` K ) ` S )
13 1 2 9 10 11 5 12 dssmapfv3d
 |-  ( ph -> ( ( D ` K ) ` S ) = ( B \ ( K ` ( B \ S ) ) ) )
14 8 13 eqtrd
 |-  ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) )
15 14 eleq2d
 |-  ( ph -> ( X e. ( I ` S ) <-> X e. ( B \ ( K ` ( B \ S ) ) ) ) )
16 eldif
 |-  ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> ( X e. B /\ -. X e. ( K ` ( B \ S ) ) ) )
17 16 a1i
 |-  ( ph -> ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> ( X e. B /\ -. X e. ( K ` ( B \ S ) ) ) ) )
18 4 17 mpbirand
 |-  ( ph -> ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> -. X e. ( K ` ( B \ S ) ) ) )
19 15 18 bitrd
 |-  ( ph -> ( X e. ( I ` S ) <-> -. X e. ( K ` ( B \ S ) ) ) )