| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d |  |-  D = ( O ` B ) | 
						
							| 3 |  | ntrcls.r |  |-  ( ph -> I D K ) | 
						
							| 4 |  | ntrcls.x |  |-  ( ph -> X e. B ) | 
						
							| 5 |  | ntrcls.s |  |-  ( ph -> S e. ~P B ) | 
						
							| 6 | 1 2 3 | ntrclsfv2 |  |-  ( ph -> ( D ` K ) = I ) | 
						
							| 7 | 6 | eqcomd |  |-  ( ph -> I = ( D ` K ) ) | 
						
							| 8 | 7 | fveq1d |  |-  ( ph -> ( I ` S ) = ( ( D ` K ) ` S ) ) | 
						
							| 9 | 2 3 | ntrclsbex |  |-  ( ph -> B e. _V ) | 
						
							| 10 | 1 2 3 | ntrclskex |  |-  ( ph -> K e. ( ~P B ^m ~P B ) ) | 
						
							| 11 |  | eqid |  |-  ( D ` K ) = ( D ` K ) | 
						
							| 12 |  | eqid |  |-  ( ( D ` K ) ` S ) = ( ( D ` K ) ` S ) | 
						
							| 13 | 1 2 9 10 11 5 12 | dssmapfv3d |  |-  ( ph -> ( ( D ` K ) ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) | 
						
							| 14 | 8 13 | eqtrd |  |-  ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) | 
						
							| 15 | 14 | eleq2d |  |-  ( ph -> ( X e. ( I ` S ) <-> X e. ( B \ ( K ` ( B \ S ) ) ) ) ) | 
						
							| 16 |  | eldif |  |-  ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> ( X e. B /\ -. X e. ( K ` ( B \ S ) ) ) ) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> ( X e. B /\ -. X e. ( K ` ( B \ S ) ) ) ) ) | 
						
							| 18 | 4 17 | mpbirand |  |-  ( ph -> ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> -. X e. ( K ` ( B \ S ) ) ) ) | 
						
							| 19 | 15 18 | bitrd |  |-  ( ph -> ( X e. ( I ` S ) <-> -. X e. ( K ` ( B \ S ) ) ) ) |