Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
2 |
|
ntrcls.d |
|- D = ( O ` B ) |
3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
4 |
|
ntrcls.x |
|- ( ph -> X e. B ) |
5 |
|
ntrcls.s |
|- ( ph -> S e. ~P B ) |
6 |
1 2 3
|
ntrclsfv2 |
|- ( ph -> ( D ` K ) = I ) |
7 |
6
|
eqcomd |
|- ( ph -> I = ( D ` K ) ) |
8 |
7
|
fveq1d |
|- ( ph -> ( I ` S ) = ( ( D ` K ) ` S ) ) |
9 |
2 3
|
ntrclsbex |
|- ( ph -> B e. _V ) |
10 |
1 2 3
|
ntrclskex |
|- ( ph -> K e. ( ~P B ^m ~P B ) ) |
11 |
|
eqid |
|- ( D ` K ) = ( D ` K ) |
12 |
|
eqid |
|- ( ( D ` K ) ` S ) = ( ( D ` K ) ` S ) |
13 |
1 2 9 10 11 5 12
|
dssmapfv3d |
|- ( ph -> ( ( D ` K ) ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) |
14 |
8 13
|
eqtrd |
|- ( ph -> ( I ` S ) = ( B \ ( K ` ( B \ S ) ) ) ) |
15 |
14
|
eleq2d |
|- ( ph -> ( X e. ( I ` S ) <-> X e. ( B \ ( K ` ( B \ S ) ) ) ) ) |
16 |
|
eldif |
|- ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> ( X e. B /\ -. X e. ( K ` ( B \ S ) ) ) ) |
17 |
16
|
a1i |
|- ( ph -> ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> ( X e. B /\ -. X e. ( K ` ( B \ S ) ) ) ) ) |
18 |
4 17
|
mpbirand |
|- ( ph -> ( X e. ( B \ ( K ` ( B \ S ) ) ) <-> -. X e. ( K ` ( B \ S ) ) ) ) |
19 |
15 18
|
bitrd |
|- ( ph -> ( X e. ( I ` S ) <-> -. X e. ( K ` ( B \ S ) ) ) ) |