Metamath Proof Explorer


Theorem ntrclselnel1

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
ntrcls.d D=OB
ntrcls.r φIDK
ntrcls.x φXB
ntrcls.s φS𝒫B
Assertion ntrclselnel1 φXIS¬XKBS

Proof

Step Hyp Ref Expression
1 ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
2 ntrcls.d D=OB
3 ntrcls.r φIDK
4 ntrcls.x φXB
5 ntrcls.s φS𝒫B
6 1 2 3 ntrclsfv2 φDK=I
7 6 eqcomd φI=DK
8 7 fveq1d φIS=DKS
9 2 3 ntrclsbex φBV
10 1 2 3 ntrclskex φK𝒫B𝒫B
11 eqid DK=DK
12 eqid DKS=DKS
13 1 2 9 10 11 5 12 dssmapfv3d φDKS=BKBS
14 8 13 eqtrd φIS=BKBS
15 14 eleq2d φXISXBKBS
16 eldif XBKBSXB¬XKBS
17 16 a1i φXBKBSXB¬XKBS
18 4 17 mpbirand φXBKBS¬XKBS
19 15 18 bitrd φXIS¬XKBS