Metamath Proof Explorer


Theorem ntrclselnel1

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in the interior of a set and non-membership in the closure of the complement of the set. (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
ntrcls.x φ X B
ntrcls.s φ S 𝒫 B
Assertion ntrclselnel1 φ X I S ¬ X K B S

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 ntrcls.x φ X B
5 ntrcls.s φ S 𝒫 B
6 1 2 3 ntrclsfv2 φ D K = I
7 6 eqcomd φ I = D K
8 7 fveq1d φ I S = D K S
9 2 3 ntrclsbex φ B V
10 1 2 3 ntrclskex φ K 𝒫 B 𝒫 B
11 eqid D K = D K
12 eqid D K S = D K S
13 1 2 9 10 11 5 12 dssmapfv3d φ D K S = B K B S
14 8 13 eqtrd φ I S = B K B S
15 14 eleq2d φ X I S X B K B S
16 eldif X B K B S X B ¬ X K B S
17 16 a1i φ X B K B S X B ¬ X K B S
18 4 17 mpbirand φ X B K B S ¬ X K B S
19 15 18 bitrd φ X I S ¬ X K B S