Metamath Proof Explorer


Theorem ntrclselnel2

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then there is an equivalence between membership in interior of the complement of a set and non-membership in the closure of the set. (Contributed by RP, 28-May-2021)

Ref Expression
Hypotheses ntrcls.o
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
ntrcls.d
|- D = ( O ` B )
ntrcls.r
|- ( ph -> I D K )
ntrcls.x
|- ( ph -> X e. B )
ntrcls.s
|- ( ph -> S e. ~P B )
Assertion ntrclselnel2
|- ( ph -> ( X e. ( I ` ( B \ S ) ) <-> -. X e. ( K ` S ) ) )

Proof

Step Hyp Ref Expression
1 ntrcls.o
 |-  O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) )
2 ntrcls.d
 |-  D = ( O ` B )
3 ntrcls.r
 |-  ( ph -> I D K )
4 ntrcls.x
 |-  ( ph -> X e. B )
5 ntrcls.s
 |-  ( ph -> S e. ~P B )
6 1 2 3 ntrclsnvobr
 |-  ( ph -> K D I )
7 1 2 6 4 5 ntrclselnel1
 |-  ( ph -> ( X e. ( K ` S ) <-> -. X e. ( I ` ( B \ S ) ) ) )
8 7 con2bid
 |-  ( ph -> ( X e. ( I ` ( B \ S ) ) <-> -. X e. ( K ` S ) ) )