| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
|
| 2 |
|
ntrcls.d |
|
| 3 |
|
ntrcls.r |
|
| 4 |
|
2fveq3 |
|
| 5 |
|
fveq2 |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
6
|
cbvralvw |
|
| 8 |
2 3
|
ntrclsrcomplex |
|
| 9 |
8
|
adantr |
|
| 10 |
2 3
|
ntrclsrcomplex |
|
| 11 |
10
|
adantr |
|
| 12 |
|
difeq2 |
|
| 13 |
12
|
eqeq2d |
|
| 14 |
13
|
adantl |
|
| 15 |
|
elpwi |
|
| 16 |
|
dfss4 |
|
| 17 |
15 16
|
sylib |
|
| 18 |
17
|
eqcomd |
|
| 19 |
18
|
adantl |
|
| 20 |
11 14 19
|
rspcedvd |
|
| 21 |
|
2fveq3 |
|
| 22 |
|
fveq2 |
|
| 23 |
21 22
|
eqeq12d |
|
| 24 |
23
|
3ad2ant3 |
|
| 25 |
1 2 3
|
ntrclsiex |
|
| 26 |
|
elmapi |
|
| 27 |
25 26
|
syl |
|
| 28 |
27 8
|
ffvelcdmd |
|
| 29 |
27 28
|
ffvelcdmd |
|
| 30 |
29
|
elpwid |
|
| 31 |
28
|
elpwid |
|
| 32 |
|
rcompleq |
|
| 33 |
30 31 32
|
syl2anc |
|
| 34 |
33
|
adantr |
|
| 35 |
1 2 3
|
ntrclsnvobr |
|
| 36 |
35
|
adantr |
|
| 37 |
1 2 35
|
ntrclsiex |
|
| 38 |
|
elmapi |
|
| 39 |
37 38
|
syl |
|
| 40 |
39
|
ffvelcdmda |
|
| 41 |
1 2 36 40
|
ntrclsfv |
|
| 42 |
|
simpr |
|
| 43 |
1 2 36 42
|
ntrclsfv |
|
| 44 |
43
|
difeq2d |
|
| 45 |
|
dfss4 |
|
| 46 |
31 45
|
sylib |
|
| 47 |
46
|
adantr |
|
| 48 |
44 47
|
eqtrd |
|
| 49 |
48
|
fveq2d |
|
| 50 |
49
|
difeq2d |
|
| 51 |
41 50
|
eqtrd |
|
| 52 |
51 43
|
eqeq12d |
|
| 53 |
34 52
|
bitr4d |
|
| 54 |
53
|
3adant3 |
|
| 55 |
24 54
|
bitrd |
|
| 56 |
9 20 55
|
ralxfrd2 |
|
| 57 |
7 56
|
bitrid |
|