| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o |  | 
						
							| 2 |  | ntrcls.d |  | 
						
							| 3 |  | ntrcls.r |  | 
						
							| 4 |  | 2fveq3 |  | 
						
							| 5 |  | fveq2 |  | 
						
							| 6 | 4 5 | eqeq12d |  | 
						
							| 7 | 6 | cbvralvw |  | 
						
							| 8 | 2 3 | ntrclsrcomplex |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 2 3 | ntrclsrcomplex |  | 
						
							| 11 | 10 | adantr |  | 
						
							| 12 |  | difeq2 |  | 
						
							| 13 | 12 | eqeq2d |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | elpwi |  | 
						
							| 16 |  | dfss4 |  | 
						
							| 17 | 15 16 | sylib |  | 
						
							| 18 | 17 | eqcomd |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 11 14 19 | rspcedvd |  | 
						
							| 21 |  | 2fveq3 |  | 
						
							| 22 |  | fveq2 |  | 
						
							| 23 | 21 22 | eqeq12d |  | 
						
							| 24 | 23 | 3ad2ant3 |  | 
						
							| 25 | 1 2 3 | ntrclsiex |  | 
						
							| 26 |  | elmapi |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 27 8 | ffvelcdmd |  | 
						
							| 29 | 27 28 | ffvelcdmd |  | 
						
							| 30 | 29 | elpwid |  | 
						
							| 31 | 28 | elpwid |  | 
						
							| 32 |  | rcompleq |  | 
						
							| 33 | 30 31 32 | syl2anc |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 1 2 3 | ntrclsnvobr |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 1 2 35 | ntrclsiex |  | 
						
							| 38 |  | elmapi |  | 
						
							| 39 | 37 38 | syl |  | 
						
							| 40 | 39 | ffvelcdmda |  | 
						
							| 41 | 1 2 36 40 | ntrclsfv |  | 
						
							| 42 |  | simpr |  | 
						
							| 43 | 1 2 36 42 | ntrclsfv |  | 
						
							| 44 | 43 | difeq2d |  | 
						
							| 45 |  | dfss4 |  | 
						
							| 46 | 31 45 | sylib |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 44 47 | eqtrd |  | 
						
							| 49 | 48 | fveq2d |  | 
						
							| 50 | 49 | difeq2d |  | 
						
							| 51 | 41 50 | eqtrd |  | 
						
							| 52 | 51 43 | eqeq12d |  | 
						
							| 53 | 34 52 | bitr4d |  | 
						
							| 54 | 53 | 3adant3 |  | 
						
							| 55 | 24 54 | bitrd |  | 
						
							| 56 | 9 20 55 | ralxfrd2 |  | 
						
							| 57 | 7 56 | bitrid |  |