Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
|- O = ( i e. _V |-> ( k e. ( ~P i ^m ~P i ) |-> ( j e. ~P i |-> ( i \ ( k ` ( i \ j ) ) ) ) ) ) |
2 |
|
ntrcls.d |
|- D = ( O ` B ) |
3 |
|
ntrcls.r |
|- ( ph -> I D K ) |
4 |
|
ineq1 |
|- ( s = a -> ( s i^i t ) = ( a i^i t ) ) |
5 |
4
|
eqeq1d |
|- ( s = a -> ( ( s i^i t ) = (/) <-> ( a i^i t ) = (/) ) ) |
6 |
|
fveq2 |
|- ( s = a -> ( I ` s ) = ( I ` a ) ) |
7 |
6
|
ineq1d |
|- ( s = a -> ( ( I ` s ) i^i ( I ` t ) ) = ( ( I ` a ) i^i ( I ` t ) ) ) |
8 |
7
|
eqeq1d |
|- ( s = a -> ( ( ( I ` s ) i^i ( I ` t ) ) = (/) <-> ( ( I ` a ) i^i ( I ` t ) ) = (/) ) ) |
9 |
5 8
|
imbi12d |
|- ( s = a -> ( ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) <-> ( ( a i^i t ) = (/) -> ( ( I ` a ) i^i ( I ` t ) ) = (/) ) ) ) |
10 |
|
ineq2 |
|- ( t = b -> ( a i^i t ) = ( a i^i b ) ) |
11 |
10
|
eqeq1d |
|- ( t = b -> ( ( a i^i t ) = (/) <-> ( a i^i b ) = (/) ) ) |
12 |
|
fveq2 |
|- ( t = b -> ( I ` t ) = ( I ` b ) ) |
13 |
12
|
ineq2d |
|- ( t = b -> ( ( I ` a ) i^i ( I ` t ) ) = ( ( I ` a ) i^i ( I ` b ) ) ) |
14 |
13
|
eqeq1d |
|- ( t = b -> ( ( ( I ` a ) i^i ( I ` t ) ) = (/) <-> ( ( I ` a ) i^i ( I ` b ) ) = (/) ) ) |
15 |
11 14
|
imbi12d |
|- ( t = b -> ( ( ( a i^i t ) = (/) -> ( ( I ` a ) i^i ( I ` t ) ) = (/) ) <-> ( ( a i^i b ) = (/) -> ( ( I ` a ) i^i ( I ` b ) ) = (/) ) ) ) |
16 |
9 15
|
cbvral2vw |
|- ( A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) <-> A. a e. ~P B A. b e. ~P B ( ( a i^i b ) = (/) -> ( ( I ` a ) i^i ( I ` b ) ) = (/) ) ) |
17 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ s ) e. ~P B ) |
18 |
17
|
adantr |
|- ( ( ph /\ s e. ~P B ) -> ( B \ s ) e. ~P B ) |
19 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ a ) e. ~P B ) |
20 |
19
|
adantr |
|- ( ( ph /\ a e. ~P B ) -> ( B \ a ) e. ~P B ) |
21 |
|
difeq2 |
|- ( s = ( B \ a ) -> ( B \ s ) = ( B \ ( B \ a ) ) ) |
22 |
21
|
eqeq2d |
|- ( s = ( B \ a ) -> ( a = ( B \ s ) <-> a = ( B \ ( B \ a ) ) ) ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ a e. ~P B ) /\ s = ( B \ a ) ) -> ( a = ( B \ s ) <-> a = ( B \ ( B \ a ) ) ) ) |
24 |
|
elpwi |
|- ( a e. ~P B -> a C_ B ) |
25 |
|
dfss4 |
|- ( a C_ B <-> ( B \ ( B \ a ) ) = a ) |
26 |
24 25
|
sylib |
|- ( a e. ~P B -> ( B \ ( B \ a ) ) = a ) |
27 |
26
|
eqcomd |
|- ( a e. ~P B -> a = ( B \ ( B \ a ) ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ a e. ~P B ) -> a = ( B \ ( B \ a ) ) ) |
29 |
20 23 28
|
rspcedvd |
|- ( ( ph /\ a e. ~P B ) -> E. s e. ~P B a = ( B \ s ) ) |
30 |
|
simpl1 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ph ) |
31 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ t ) e. ~P B ) |
32 |
30 31
|
syl |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B ) -> ( B \ t ) e. ~P B ) |
33 |
2 3
|
ntrclsrcomplex |
|- ( ph -> ( B \ b ) e. ~P B ) |
34 |
33
|
adantr |
|- ( ( ph /\ b e. ~P B ) -> ( B \ b ) e. ~P B ) |
35 |
|
difeq2 |
|- ( t = ( B \ b ) -> ( B \ t ) = ( B \ ( B \ b ) ) ) |
36 |
35
|
eqeq2d |
|- ( t = ( B \ b ) -> ( b = ( B \ t ) <-> b = ( B \ ( B \ b ) ) ) ) |
37 |
36
|
adantl |
|- ( ( ( ph /\ b e. ~P B ) /\ t = ( B \ b ) ) -> ( b = ( B \ t ) <-> b = ( B \ ( B \ b ) ) ) ) |
38 |
|
elpwi |
|- ( b e. ~P B -> b C_ B ) |
39 |
|
dfss4 |
|- ( b C_ B <-> ( B \ ( B \ b ) ) = b ) |
40 |
38 39
|
sylib |
|- ( b e. ~P B -> ( B \ ( B \ b ) ) = b ) |
41 |
40
|
eqcomd |
|- ( b e. ~P B -> b = ( B \ ( B \ b ) ) ) |
42 |
41
|
adantl |
|- ( ( ph /\ b e. ~P B ) -> b = ( B \ ( B \ b ) ) ) |
43 |
34 37 42
|
rspcedvd |
|- ( ( ph /\ b e. ~P B ) -> E. t e. ~P B b = ( B \ t ) ) |
44 |
43
|
3ad2antl1 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ b e. ~P B ) -> E. t e. ~P B b = ( B \ t ) ) |
45 |
|
simp13 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> a = ( B \ s ) ) |
46 |
|
ineq1 |
|- ( a = ( B \ s ) -> ( a i^i b ) = ( ( B \ s ) i^i b ) ) |
47 |
46
|
eqeq1d |
|- ( a = ( B \ s ) -> ( ( a i^i b ) = (/) <-> ( ( B \ s ) i^i b ) = (/) ) ) |
48 |
|
fveq2 |
|- ( a = ( B \ s ) -> ( I ` a ) = ( I ` ( B \ s ) ) ) |
49 |
48
|
ineq1d |
|- ( a = ( B \ s ) -> ( ( I ` a ) i^i ( I ` b ) ) = ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) ) |
50 |
49
|
eqeq1d |
|- ( a = ( B \ s ) -> ( ( ( I ` a ) i^i ( I ` b ) ) = (/) <-> ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) = (/) ) ) |
51 |
47 50
|
imbi12d |
|- ( a = ( B \ s ) -> ( ( ( a i^i b ) = (/) -> ( ( I ` a ) i^i ( I ` b ) ) = (/) ) <-> ( ( ( B \ s ) i^i b ) = (/) -> ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) = (/) ) ) ) |
52 |
45 51
|
syl |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( a i^i b ) = (/) -> ( ( I ` a ) i^i ( I ` b ) ) = (/) ) <-> ( ( ( B \ s ) i^i b ) = (/) -> ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) = (/) ) ) ) |
53 |
|
simp3 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> b = ( B \ t ) ) |
54 |
|
ineq2 |
|- ( b = ( B \ t ) -> ( ( B \ s ) i^i b ) = ( ( B \ s ) i^i ( B \ t ) ) ) |
55 |
54
|
eqeq1d |
|- ( b = ( B \ t ) -> ( ( ( B \ s ) i^i b ) = (/) <-> ( ( B \ s ) i^i ( B \ t ) ) = (/) ) ) |
56 |
|
fveq2 |
|- ( b = ( B \ t ) -> ( I ` b ) = ( I ` ( B \ t ) ) ) |
57 |
56
|
ineq2d |
|- ( b = ( B \ t ) -> ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) = ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) |
58 |
57
|
eqeq1d |
|- ( b = ( B \ t ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) = (/) <-> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) = (/) ) ) |
59 |
55 58
|
imbi12d |
|- ( b = ( B \ t ) -> ( ( ( ( B \ s ) i^i b ) = (/) -> ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) = (/) ) <-> ( ( ( B \ s ) i^i ( B \ t ) ) = (/) -> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) = (/) ) ) ) |
60 |
53 59
|
syl |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( ( B \ s ) i^i b ) = (/) -> ( ( I ` ( B \ s ) ) i^i ( I ` b ) ) = (/) ) <-> ( ( ( B \ s ) i^i ( B \ t ) ) = (/) -> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) = (/) ) ) ) |
61 |
|
simp11 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ph ) |
62 |
|
simp12 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> s e. ~P B ) |
63 |
|
simp2 |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> t e. ~P B ) |
64 |
|
simp2 |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> s e. ~P B ) |
65 |
64
|
elpwid |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> s C_ B ) |
66 |
|
simp3 |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> t e. ~P B ) |
67 |
66
|
elpwid |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> t C_ B ) |
68 |
65 67
|
unssd |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( s u. t ) C_ B ) |
69 |
|
ssid |
|- B C_ B |
70 |
|
rcompleq |
|- ( ( ( s u. t ) C_ B /\ B C_ B ) -> ( ( s u. t ) = B <-> ( B \ ( s u. t ) ) = ( B \ B ) ) ) |
71 |
68 69 70
|
sylancl |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( s u. t ) = B <-> ( B \ ( s u. t ) ) = ( B \ B ) ) ) |
72 |
|
difundi |
|- ( B \ ( s u. t ) ) = ( ( B \ s ) i^i ( B \ t ) ) |
73 |
|
difid |
|- ( B \ B ) = (/) |
74 |
72 73
|
eqeq12i |
|- ( ( B \ ( s u. t ) ) = ( B \ B ) <-> ( ( B \ s ) i^i ( B \ t ) ) = (/) ) |
75 |
71 74
|
bitr2di |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( ( B \ s ) i^i ( B \ t ) ) = (/) <-> ( s u. t ) = B ) ) |
76 |
1 2 3
|
ntrclsiex |
|- ( ph -> I e. ( ~P B ^m ~P B ) ) |
77 |
76
|
3ad2ant1 |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> I e. ( ~P B ^m ~P B ) ) |
78 |
|
elmapi |
|- ( I e. ( ~P B ^m ~P B ) -> I : ~P B --> ~P B ) |
79 |
77 78
|
syl |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> I : ~P B --> ~P B ) |
80 |
2 3
|
ntrclsbex |
|- ( ph -> B e. _V ) |
81 |
80
|
3ad2ant1 |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> B e. _V ) |
82 |
|
difssd |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( B \ s ) C_ B ) |
83 |
81 82
|
sselpwd |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( B \ s ) e. ~P B ) |
84 |
79 83
|
ffvelrnd |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( I ` ( B \ s ) ) e. ~P B ) |
85 |
84
|
elpwid |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( I ` ( B \ s ) ) C_ B ) |
86 |
|
ssinss1 |
|- ( ( I ` ( B \ s ) ) C_ B -> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ B ) |
87 |
85 86
|
syl |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ B ) |
88 |
|
0ss |
|- (/) C_ B |
89 |
|
rcompleq |
|- ( ( ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) C_ B /\ (/) C_ B ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) = (/) <-> ( B \ ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) = ( B \ (/) ) ) ) |
90 |
87 88 89
|
sylancl |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) = (/) <-> ( B \ ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) = ( B \ (/) ) ) ) |
91 |
|
difindi |
|- ( B \ ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) = ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) |
92 |
|
dif0 |
|- ( B \ (/) ) = B |
93 |
91 92
|
eqeq12i |
|- ( ( B \ ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) ) = ( B \ (/) ) <-> ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) = B ) |
94 |
90 93
|
bitrdi |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) = (/) <-> ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) = B ) ) |
95 |
75 94
|
imbi12d |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( ( ( B \ s ) i^i ( B \ t ) ) = (/) -> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) = (/) ) <-> ( ( s u. t ) = B -> ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) = B ) ) ) |
96 |
|
eqid |
|- ( D ` I ) = ( D ` I ) |
97 |
|
eqid |
|- ( ( D ` I ) ` s ) = ( ( D ` I ) ` s ) |
98 |
1 2 81 77 96 64 97
|
dssmapfv3d |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( D ` I ) ` s ) = ( B \ ( I ` ( B \ s ) ) ) ) |
99 |
|
eqid |
|- ( ( D ` I ) ` t ) = ( ( D ` I ) ` t ) |
100 |
1 2 81 77 96 66 99
|
dssmapfv3d |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( D ` I ) ` t ) = ( B \ ( I ` ( B \ t ) ) ) ) |
101 |
98 100
|
uneq12d |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( ( D ` I ) ` s ) u. ( ( D ` I ) ` t ) ) = ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) ) |
102 |
1 2 3
|
ntrclsfv1 |
|- ( ph -> ( D ` I ) = K ) |
103 |
102
|
3ad2ant1 |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( D ` I ) = K ) |
104 |
|
fveq1 |
|- ( ( D ` I ) = K -> ( ( D ` I ) ` s ) = ( K ` s ) ) |
105 |
|
fveq1 |
|- ( ( D ` I ) = K -> ( ( D ` I ) ` t ) = ( K ` t ) ) |
106 |
104 105
|
uneq12d |
|- ( ( D ` I ) = K -> ( ( ( D ` I ) ` s ) u. ( ( D ` I ) ` t ) ) = ( ( K ` s ) u. ( K ` t ) ) ) |
107 |
103 106
|
syl |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( ( D ` I ) ` s ) u. ( ( D ` I ) ` t ) ) = ( ( K ` s ) u. ( K ` t ) ) ) |
108 |
101 107
|
eqtr3d |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) = ( ( K ` s ) u. ( K ` t ) ) ) |
109 |
108
|
eqeq1d |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) = B <-> ( ( K ` s ) u. ( K ` t ) ) = B ) ) |
110 |
109
|
imbi2d |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( ( s u. t ) = B -> ( ( B \ ( I ` ( B \ s ) ) ) u. ( B \ ( I ` ( B \ t ) ) ) ) = B ) <-> ( ( s u. t ) = B -> ( ( K ` s ) u. ( K ` t ) ) = B ) ) ) |
111 |
95 110
|
bitrd |
|- ( ( ph /\ s e. ~P B /\ t e. ~P B ) -> ( ( ( ( B \ s ) i^i ( B \ t ) ) = (/) -> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) = (/) ) <-> ( ( s u. t ) = B -> ( ( K ` s ) u. ( K ` t ) ) = B ) ) ) |
112 |
61 62 63 111
|
syl3anc |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( ( B \ s ) i^i ( B \ t ) ) = (/) -> ( ( I ` ( B \ s ) ) i^i ( I ` ( B \ t ) ) ) = (/) ) <-> ( ( s u. t ) = B -> ( ( K ` s ) u. ( K ` t ) ) = B ) ) ) |
113 |
52 60 112
|
3bitrd |
|- ( ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) /\ t e. ~P B /\ b = ( B \ t ) ) -> ( ( ( a i^i b ) = (/) -> ( ( I ` a ) i^i ( I ` b ) ) = (/) ) <-> ( ( s u. t ) = B -> ( ( K ` s ) u. ( K ` t ) ) = B ) ) ) |
114 |
32 44 113
|
ralxfrd2 |
|- ( ( ph /\ s e. ~P B /\ a = ( B \ s ) ) -> ( A. b e. ~P B ( ( a i^i b ) = (/) -> ( ( I ` a ) i^i ( I ` b ) ) = (/) ) <-> A. t e. ~P B ( ( s u. t ) = B -> ( ( K ` s ) u. ( K ` t ) ) = B ) ) ) |
115 |
18 29 114
|
ralxfrd2 |
|- ( ph -> ( A. a e. ~P B A. b e. ~P B ( ( a i^i b ) = (/) -> ( ( I ` a ) i^i ( I ` b ) ) = (/) ) <-> A. s e. ~P B A. t e. ~P B ( ( s u. t ) = B -> ( ( K ` s ) u. ( K ` t ) ) = B ) ) ) |
116 |
16 115
|
syl5bb |
|- ( ph -> ( A. s e. ~P B A. t e. ~P B ( ( s i^i t ) = (/) -> ( ( I ` s ) i^i ( I ` t ) ) = (/) ) <-> A. s e. ~P B A. t e. ~P B ( ( s u. t ) = B -> ( ( K ` s ) u. ( K ` t ) ) = B ) ) ) |