| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
| 3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
| 4 |
|
sseq1 |
⊢ ( 𝑠 = 𝑏 → ( 𝑠 ⊆ 𝑡 ↔ 𝑏 ⊆ 𝑡 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑠 = 𝑏 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑏 ) ) |
| 6 |
5
|
sseq1d |
⊢ ( 𝑠 = 𝑏 → ( ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ↔ ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ) |
| 7 |
4 6
|
imbi12d |
⊢ ( 𝑠 = 𝑏 → ( ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝑏 ⊆ 𝑡 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ) ) |
| 8 |
|
sseq2 |
⊢ ( 𝑡 = 𝑎 → ( 𝑏 ⊆ 𝑡 ↔ 𝑏 ⊆ 𝑎 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑡 = 𝑎 → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ 𝑎 ) ) |
| 10 |
9
|
sseq2d |
⊢ ( 𝑡 = 𝑎 → ( ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑡 ) ↔ ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) |
| 11 |
8 10
|
imbi12d |
⊢ ( 𝑡 = 𝑎 → ( ( 𝑏 ⊆ 𝑡 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) ) |
| 12 |
7 11
|
cbvral2vw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑏 ∈ 𝒫 𝐵 ∀ 𝑎 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) |
| 13 |
|
ralcom |
⊢ ( ∀ 𝑏 ∈ 𝒫 𝐵 ∀ 𝑎 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) |
| 14 |
12 13
|
bitri |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) |
| 15 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝜑 ) |
| 16 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐵 ∈ V ) |
| 18 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
| 19 |
17 18
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 20 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) |
| 21 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
| 22 |
|
difssd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ⊆ 𝐵 ) |
| 23 |
21 22
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ∈ 𝒫 𝐵 ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → 𝑠 = ( 𝐵 ∖ 𝑎 ) ) |
| 25 |
24
|
difeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) |
| 26 |
25
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) ) |
| 27 |
|
eqcom |
⊢ ( 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 28 |
26 27
|
bitrdi |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) ) |
| 29 |
|
dfss4 |
⊢ ( 𝑎 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 30 |
29
|
biimpi |
⊢ ( 𝑎 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
| 32 |
23 28 31
|
rspcedvd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
| 33 |
16 20 32
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
| 34 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝜑 ) |
| 35 |
34 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝐵 ∈ V ) |
| 36 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ⊆ 𝐵 ) |
| 37 |
35 36
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 38 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵 ) |
| 39 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
| 40 |
|
difssd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ⊆ 𝐵 ) |
| 41 |
39 40
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 42 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → 𝑡 = ( 𝐵 ∖ 𝑏 ) ) |
| 43 |
42
|
difeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) |
| 44 |
43
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) ) |
| 45 |
|
eqcom |
⊢ ( 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 46 |
44 45
|
bitrdi |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) ) |
| 47 |
|
dfss4 |
⊢ ( 𝑏 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 48 |
47
|
biimpi |
⊢ ( 𝑏 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 49 |
48
|
adantl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
| 50 |
41 46 49
|
rspcedvd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
| 51 |
16 38 50
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
| 52 |
51
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
| 53 |
|
simp12 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
| 54 |
53
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑠 ⊆ 𝐵 ) |
| 55 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
| 56 |
55
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑡 ⊆ 𝐵 ) |
| 57 |
|
sscon34b |
⊢ ( ( 𝑠 ⊆ 𝐵 ∧ 𝑡 ⊆ 𝐵 ) → ( 𝑠 ⊆ 𝑡 ↔ ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) ) ) |
| 58 |
54 56 57
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝑠 ⊆ 𝑡 ↔ ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) ) ) |
| 59 |
58
|
bicomd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) ↔ 𝑠 ⊆ 𝑡 ) ) |
| 60 |
|
simp11 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝜑 ) |
| 61 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 62 |
60 61
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 63 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 64 |
62 63
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
| 65 |
60 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐵 ∈ V ) |
| 66 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ 𝑡 ) ⊆ 𝐵 ) |
| 67 |
65 66
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
| 68 |
64 67
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ∈ 𝒫 𝐵 ) |
| 69 |
68
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ 𝐵 ) |
| 70 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
| 71 |
65 70
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
| 72 |
64 71
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∈ 𝒫 𝐵 ) |
| 73 |
72
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) |
| 74 |
|
sscon34b |
⊢ ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ 𝐵 ∧ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 75 |
69 73 74
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 76 |
59 75
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ↔ ( 𝑠 ⊆ 𝑡 → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 77 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
| 78 |
|
simp13 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
| 79 |
77 78
|
sseq12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝑏 ⊆ 𝑎 ↔ ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) ) ) |
| 80 |
77
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ 𝑏 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
| 81 |
78
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ 𝑎 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
| 82 |
80 81
|
sseq12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ↔ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 83 |
79 82
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ( ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
| 84 |
1 2 3
|
ntrclsfv1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
| 85 |
60 84
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
| 86 |
85
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐾 ‘ 𝑠 ) ) |
| 87 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐼 ) = ( 𝐷 ‘ 𝐼 ) |
| 88 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) |
| 89 |
1 2 65 62 87 53 88
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 90 |
86 89
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐾 ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
| 91 |
60 3
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐼 𝐷 𝐾 ) |
| 92 |
1 2 91
|
ntrclsfv1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
| 93 |
92
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐾 ‘ 𝑡 ) ) |
| 94 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) |
| 95 |
1 2 65 62 87 55 94
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 96 |
93 95
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐾 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
| 97 |
90 96
|
sseq12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
| 98 |
97
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ↔ ( 𝑠 ⊆ 𝑡 → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
| 99 |
76 83 98
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 100 |
37 52 99
|
ralxfrd2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 101 |
19 33 100
|
ralxfrd2 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |
| 102 |
14 101
|
bitrid |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |