| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ntrcls.o | ⊢ 𝑂  =  ( 𝑖  ∈  V  ↦  ( 𝑘  ∈  ( 𝒫  𝑖  ↑m  𝒫  𝑖 )  ↦  ( 𝑗  ∈  𝒫  𝑖  ↦  ( 𝑖  ∖  ( 𝑘 ‘ ( 𝑖  ∖  𝑗 ) ) ) ) ) ) | 
						
							| 2 |  | ntrcls.d | ⊢ 𝐷  =  ( 𝑂 ‘ 𝐵 ) | 
						
							| 3 |  | ntrcls.r | ⊢ ( 𝜑  →  𝐼 𝐷 𝐾 ) | 
						
							| 4 |  | sseq1 | ⊢ ( 𝑠  =  𝑏  →  ( 𝑠  ⊆  𝑡  ↔  𝑏  ⊆  𝑡 ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑠  =  𝑏  →  ( 𝐼 ‘ 𝑠 )  =  ( 𝐼 ‘ 𝑏 ) ) | 
						
							| 6 | 5 | sseq1d | ⊢ ( 𝑠  =  𝑏  →  ( ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 )  ↔  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑡 ) ) ) | 
						
							| 7 | 4 6 | imbi12d | ⊢ ( 𝑠  =  𝑏  →  ( ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ( 𝑏  ⊆  𝑡  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑡 ) ) ) ) | 
						
							| 8 |  | sseq2 | ⊢ ( 𝑡  =  𝑎  →  ( 𝑏  ⊆  𝑡  ↔  𝑏  ⊆  𝑎 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑡  =  𝑎  →  ( 𝐼 ‘ 𝑡 )  =  ( 𝐼 ‘ 𝑎 ) ) | 
						
							| 10 | 9 | sseq2d | ⊢ ( 𝑡  =  𝑎  →  ( ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑡 )  ↔  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) ) ) | 
						
							| 11 | 8 10 | imbi12d | ⊢ ( 𝑡  =  𝑎  →  ( ( 𝑏  ⊆  𝑡  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ( 𝑏  ⊆  𝑎  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) ) ) ) | 
						
							| 12 | 7 11 | cbvral2vw | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑏  ∈  𝒫  𝐵 ∀ 𝑎  ∈  𝒫  𝐵 ( 𝑏  ⊆  𝑎  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) ) ) | 
						
							| 13 |  | ralcom | ⊢ ( ∀ 𝑏  ∈  𝒫  𝐵 ∀ 𝑎  ∈  𝒫  𝐵 ( 𝑏  ⊆  𝑎  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) )  ↔  ∀ 𝑎  ∈  𝒫  𝐵 ∀ 𝑏  ∈  𝒫  𝐵 ( 𝑏  ⊆  𝑎  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) ) ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑎  ∈  𝒫  𝐵 ∀ 𝑏  ∈  𝒫  𝐵 ( 𝑏  ⊆  𝑎  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) ) ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝜑 ) | 
						
							| 16 | 2 3 | ntrclsbex | ⊢ ( 𝜑  →  𝐵  ∈  V ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 18 |  | difssd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑠 )  ⊆  𝐵 ) | 
						
							| 19 | 17 18 | sselpwd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 20 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  𝐵  →  𝑎  ⊆  𝐵 ) | 
						
							| 21 |  | simpl | ⊢ ( ( 𝐵  ∈  V  ∧  𝑎  ⊆  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 22 |  | difssd | ⊢ ( ( 𝐵  ∈  V  ∧  𝑎  ⊆  𝐵 )  →  ( 𝐵  ∖  𝑎 )  ⊆  𝐵 ) | 
						
							| 23 | 21 22 | sselpwd | ⊢ ( ( 𝐵  ∈  V  ∧  𝑎  ⊆  𝐵 )  →  ( 𝐵  ∖  𝑎 )  ∈  𝒫  𝐵 ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝑎  ⊆  𝐵 )  ∧  𝑠  =  ( 𝐵  ∖  𝑎 ) )  →  𝑠  =  ( 𝐵  ∖  𝑎 ) ) | 
						
							| 25 | 24 | difeq2d | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝑎  ⊆  𝐵 )  ∧  𝑠  =  ( 𝐵  ∖  𝑎 ) )  →  ( 𝐵  ∖  𝑠 )  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) ) ) | 
						
							| 26 | 25 | eqeq2d | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝑎  ⊆  𝐵 )  ∧  𝑠  =  ( 𝐵  ∖  𝑎 ) )  →  ( 𝑎  =  ( 𝐵  ∖  𝑠 )  ↔  𝑎  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) ) ) ) | 
						
							| 27 |  | eqcom | ⊢ ( 𝑎  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 28 | 26 27 | bitrdi | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝑎  ⊆  𝐵 )  ∧  𝑠  =  ( 𝐵  ∖  𝑎 ) )  →  ( 𝑎  =  ( 𝐵  ∖  𝑠 )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) ) | 
						
							| 29 |  | dfss4 | ⊢ ( 𝑎  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 30 | 29 | biimpi | ⊢ ( 𝑎  ⊆  𝐵  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝐵  ∈  V  ∧  𝑎  ⊆  𝐵 )  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑎 ) )  =  𝑎 ) | 
						
							| 32 | 23 28 31 | rspcedvd | ⊢ ( ( 𝐵  ∈  V  ∧  𝑎  ⊆  𝐵 )  →  ∃ 𝑠  ∈  𝒫  𝐵 𝑎  =  ( 𝐵  ∖  𝑠 ) ) | 
						
							| 33 | 16 20 32 | syl2an | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝐵 )  →  ∃ 𝑠  ∈  𝒫  𝐵 𝑎  =  ( 𝐵  ∖  𝑠 ) ) | 
						
							| 34 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝜑 ) | 
						
							| 35 | 34 16 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 36 |  | difssd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑡 )  ⊆  𝐵 ) | 
						
							| 37 | 35 36 | sselpwd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵 )  →  ( 𝐵  ∖  𝑡 )  ∈  𝒫  𝐵 ) | 
						
							| 38 |  | elpwi | ⊢ ( 𝑏  ∈  𝒫  𝐵  →  𝑏  ⊆  𝐵 ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝐵  ∈  V  ∧  𝑏  ⊆  𝐵 )  →  𝐵  ∈  V ) | 
						
							| 40 |  | difssd | ⊢ ( ( 𝐵  ∈  V  ∧  𝑏  ⊆  𝐵 )  →  ( 𝐵  ∖  𝑏 )  ⊆  𝐵 ) | 
						
							| 41 | 39 40 | sselpwd | ⊢ ( ( 𝐵  ∈  V  ∧  𝑏  ⊆  𝐵 )  →  ( 𝐵  ∖  𝑏 )  ∈  𝒫  𝐵 ) | 
						
							| 42 |  | simpr | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝑏  ⊆  𝐵 )  ∧  𝑡  =  ( 𝐵  ∖  𝑏 ) )  →  𝑡  =  ( 𝐵  ∖  𝑏 ) ) | 
						
							| 43 | 42 | difeq2d | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝑏  ⊆  𝐵 )  ∧  𝑡  =  ( 𝐵  ∖  𝑏 ) )  →  ( 𝐵  ∖  𝑡 )  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) ) ) | 
						
							| 44 | 43 | eqeq2d | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝑏  ⊆  𝐵 )  ∧  𝑡  =  ( 𝐵  ∖  𝑏 ) )  →  ( 𝑏  =  ( 𝐵  ∖  𝑡 )  ↔  𝑏  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) ) ) ) | 
						
							| 45 |  | eqcom | ⊢ ( 𝑏  =  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 46 | 44 45 | bitrdi | ⊢ ( ( ( 𝐵  ∈  V  ∧  𝑏  ⊆  𝐵 )  ∧  𝑡  =  ( 𝐵  ∖  𝑏 ) )  →  ( 𝑏  =  ( 𝐵  ∖  𝑡 )  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) ) | 
						
							| 47 |  | dfss4 | ⊢ ( 𝑏  ⊆  𝐵  ↔  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 48 | 47 | biimpi | ⊢ ( 𝑏  ⊆  𝐵  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝐵  ∈  V  ∧  𝑏  ⊆  𝐵 )  →  ( 𝐵  ∖  ( 𝐵  ∖  𝑏 ) )  =  𝑏 ) | 
						
							| 50 | 41 46 49 | rspcedvd | ⊢ ( ( 𝐵  ∈  V  ∧  𝑏  ⊆  𝐵 )  →  ∃ 𝑡  ∈  𝒫  𝐵 𝑏  =  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 51 | 16 38 50 | syl2an | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝒫  𝐵 )  →  ∃ 𝑡  ∈  𝒫  𝐵 𝑏  =  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 52 | 51 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑏  ∈  𝒫  𝐵 )  →  ∃ 𝑡  ∈  𝒫  𝐵 𝑏  =  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 53 |  | simp12 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑠  ∈  𝒫  𝐵 ) | 
						
							| 54 | 53 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑠  ⊆  𝐵 ) | 
						
							| 55 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑡  ∈  𝒫  𝐵 ) | 
						
							| 56 | 55 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑡  ⊆  𝐵 ) | 
						
							| 57 |  | sscon34b | ⊢ ( ( 𝑠  ⊆  𝐵  ∧  𝑡  ⊆  𝐵 )  →  ( 𝑠  ⊆  𝑡  ↔  ( 𝐵  ∖  𝑡 )  ⊆  ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 58 | 54 56 57 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝑠  ⊆  𝑡  ↔  ( 𝐵  ∖  𝑡 )  ⊆  ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 59 | 58 | bicomd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐵  ∖  𝑡 )  ⊆  ( 𝐵  ∖  𝑠 )  ↔  𝑠  ⊆  𝑡 ) ) | 
						
							| 60 |  | simp11 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝜑 ) | 
						
							| 61 | 1 2 3 | ntrclsiex | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 ) ) | 
						
							| 63 |  | elmapi | ⊢ ( 𝐼  ∈  ( 𝒫  𝐵  ↑m  𝒫  𝐵 )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝐼 : 𝒫  𝐵 ⟶ 𝒫  𝐵 ) | 
						
							| 65 | 60 16 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝐵  ∈  V ) | 
						
							| 66 |  | difssd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐵  ∖  𝑡 )  ⊆  𝐵 ) | 
						
							| 67 | 65 66 | sselpwd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐵  ∖  𝑡 )  ∈  𝒫  𝐵 ) | 
						
							| 68 | 64 67 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) )  ∈  𝒫  𝐵 ) | 
						
							| 69 | 68 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) )  ⊆  𝐵 ) | 
						
							| 70 |  | difssd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐵  ∖  𝑠 )  ⊆  𝐵 ) | 
						
							| 71 | 65 70 | sselpwd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐵  ∖  𝑠 )  ∈  𝒫  𝐵 ) | 
						
							| 72 | 64 71 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ∈  𝒫  𝐵 ) | 
						
							| 73 | 72 | elpwid | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ⊆  𝐵 ) | 
						
							| 74 |  | sscon34b | ⊢ ( ( ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) )  ⊆  𝐵  ∧  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ⊆  𝐵 )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ⊆  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) | 
						
							| 75 | 69 73 74 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ⊆  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) | 
						
							| 76 | 59 75 | imbi12d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( ( 𝐵  ∖  𝑡 )  ⊆  ( 𝐵  ∖  𝑠 )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ↔  ( 𝑠  ⊆  𝑡  →  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ⊆  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) ) | 
						
							| 77 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑏  =  ( 𝐵  ∖  𝑡 ) ) | 
						
							| 78 |  | simp13 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝑎  =  ( 𝐵  ∖  𝑠 ) ) | 
						
							| 79 | 77 78 | sseq12d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝑏  ⊆  𝑎  ↔  ( 𝐵  ∖  𝑡 )  ⊆  ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 80 | 77 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐼 ‘ 𝑏 )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) | 
						
							| 81 | 78 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐼 ‘ 𝑎 )  =  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) | 
						
							| 82 | 80 81 | sseq12d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 )  ↔  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 83 | 79 82 | imbi12d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝑏  ⊆  𝑎  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) )  ↔  ( ( 𝐵  ∖  𝑡 )  ⊆  ( 𝐵  ∖  𝑠 )  →  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) )  ⊆  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) ) | 
						
							| 84 | 1 2 3 | ntrclsfv1 | ⊢ ( 𝜑  →  ( 𝐷 ‘ 𝐼 )  =  𝐾 ) | 
						
							| 85 | 60 84 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐷 ‘ 𝐼 )  =  𝐾 ) | 
						
							| 86 | 85 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( 𝐾 ‘ 𝑠 ) ) | 
						
							| 87 |  | eqid | ⊢ ( 𝐷 ‘ 𝐼 )  =  ( 𝐷 ‘ 𝐼 ) | 
						
							| 88 |  | eqid | ⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) | 
						
							| 89 | 1 2 65 62 87 53 88 | dssmapfv3d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 90 | 86 89 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐾 ‘ 𝑠 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) ) ) | 
						
							| 91 | 60 3 | syl | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  𝐼 𝐷 𝐾 ) | 
						
							| 92 | 1 2 91 | ntrclsfv1 | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐷 ‘ 𝐼 )  =  𝐾 ) | 
						
							| 93 | 92 | fveq1d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( 𝐾 ‘ 𝑡 ) ) | 
						
							| 94 |  | eqid | ⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) | 
						
							| 95 | 1 2 65 62 87 55 94 | dssmapfv3d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 96 | 93 95 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( 𝐾 ‘ 𝑡 )  =  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) | 
						
							| 97 | 90 96 | sseq12d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝐾 ‘ 𝑠 )  ⊆  ( 𝐾 ‘ 𝑡 )  ↔  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ⊆  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) | 
						
							| 98 | 97 | imbi2d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝑠  ⊆  𝑡  →  ( 𝐾 ‘ 𝑠 )  ⊆  ( 𝐾 ‘ 𝑡 ) )  ↔  ( 𝑠  ⊆  𝑡  →  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑠 ) ) )  ⊆  ( 𝐵  ∖  ( 𝐼 ‘ ( 𝐵  ∖  𝑡 ) ) ) ) ) ) | 
						
							| 99 | 76 83 98 | 3bitr4d | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  ∧  𝑡  ∈  𝒫  𝐵  ∧  𝑏  =  ( 𝐵  ∖  𝑡 ) )  →  ( ( 𝑏  ⊆  𝑎  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) )  ↔  ( 𝑠  ⊆  𝑡  →  ( 𝐾 ‘ 𝑠 )  ⊆  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 100 | 37 52 99 | ralxfrd2 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝒫  𝐵  ∧  𝑎  =  ( 𝐵  ∖  𝑠 ) )  →  ( ∀ 𝑏  ∈  𝒫  𝐵 ( 𝑏  ⊆  𝑎  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) )  ↔  ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐾 ‘ 𝑠 )  ⊆  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 101 | 19 33 100 | ralxfrd2 | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝒫  𝐵 ∀ 𝑏  ∈  𝒫  𝐵 ( 𝑏  ⊆  𝑎  →  ( 𝐼 ‘ 𝑏 )  ⊆  ( 𝐼 ‘ 𝑎 ) )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐾 ‘ 𝑠 )  ⊆  ( 𝐾 ‘ 𝑡 ) ) ) ) | 
						
							| 102 | 14 101 | bitrid | ⊢ ( 𝜑  →  ( ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐼 ‘ 𝑠 )  ⊆  ( 𝐼 ‘ 𝑡 ) )  ↔  ∀ 𝑠  ∈  𝒫  𝐵 ∀ 𝑡  ∈  𝒫  𝐵 ( 𝑠  ⊆  𝑡  →  ( 𝐾 ‘ 𝑠 )  ⊆  ( 𝐾 ‘ 𝑡 ) ) ) ) |