Step |
Hyp |
Ref |
Expression |
1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
4 |
|
sseq1 |
⊢ ( 𝑠 = 𝑏 → ( 𝑠 ⊆ 𝑡 ↔ 𝑏 ⊆ 𝑡 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑠 = 𝑏 → ( 𝐼 ‘ 𝑠 ) = ( 𝐼 ‘ 𝑏 ) ) |
6 |
5
|
sseq1d |
⊢ ( 𝑠 = 𝑏 → ( ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ↔ ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ) |
7 |
4 6
|
imbi12d |
⊢ ( 𝑠 = 𝑏 → ( ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝑏 ⊆ 𝑡 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ) ) |
8 |
|
sseq2 |
⊢ ( 𝑡 = 𝑎 → ( 𝑏 ⊆ 𝑡 ↔ 𝑏 ⊆ 𝑎 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑡 = 𝑎 → ( 𝐼 ‘ 𝑡 ) = ( 𝐼 ‘ 𝑎 ) ) |
10 |
9
|
sseq2d |
⊢ ( 𝑡 = 𝑎 → ( ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑡 ) ↔ ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑡 = 𝑎 → ( ( 𝑏 ⊆ 𝑡 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) ) |
12 |
7 11
|
cbvral2vw |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑏 ∈ 𝒫 𝐵 ∀ 𝑎 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) |
13 |
|
ralcom |
⊢ ( ∀ 𝑏 ∈ 𝒫 𝐵 ∀ 𝑎 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) |
14 |
12 13
|
bitri |
⊢ ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ) |
15 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝜑 ) |
16 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → 𝐵 ∈ V ) |
18 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
19 |
17 18
|
sselpwd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
20 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) |
21 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
22 |
|
difssd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ⊆ 𝐵 ) |
23 |
21 22
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑎 ) ∈ 𝒫 𝐵 ) |
24 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → 𝑠 = ( 𝐵 ∖ 𝑎 ) ) |
25 |
24
|
difeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝐵 ∖ 𝑠 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) |
26 |
25
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ) ) |
27 |
|
eqcom |
⊢ ( 𝑎 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
28 |
26 27
|
bitrdi |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) ∧ 𝑠 = ( 𝐵 ∖ 𝑎 ) ) → ( 𝑎 = ( 𝐵 ∖ 𝑠 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) ) |
29 |
|
dfss4 |
⊢ ( 𝑎 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
30 |
29
|
biimpi |
⊢ ( 𝑎 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
31 |
30
|
adantl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑎 ) ) = 𝑎 ) |
32 |
23 28 31
|
rspcedvd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑎 ⊆ 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
33 |
16 20 32
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝐵 ) → ∃ 𝑠 ∈ 𝒫 𝐵 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
34 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝜑 ) |
35 |
34 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → 𝐵 ∈ V ) |
36 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ⊆ 𝐵 ) |
37 |
35 36
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
38 |
|
elpwi |
⊢ ( 𝑏 ∈ 𝒫 𝐵 → 𝑏 ⊆ 𝐵 ) |
39 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → 𝐵 ∈ V ) |
40 |
|
difssd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ⊆ 𝐵 ) |
41 |
39 40
|
sselpwd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝑏 ) ∈ 𝒫 𝐵 ) |
42 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → 𝑡 = ( 𝐵 ∖ 𝑏 ) ) |
43 |
42
|
difeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝐵 ∖ 𝑡 ) = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) |
44 |
43
|
eqeq2d |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ) ) |
45 |
|
eqcom |
⊢ ( 𝑏 = ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
46 |
44 45
|
bitrdi |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) ∧ 𝑡 = ( 𝐵 ∖ 𝑏 ) ) → ( 𝑏 = ( 𝐵 ∖ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) ) |
47 |
|
dfss4 |
⊢ ( 𝑏 ⊆ 𝐵 ↔ ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
48 |
47
|
biimpi |
⊢ ( 𝑏 ⊆ 𝐵 → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
49 |
48
|
adantl |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐵 ∖ ( 𝐵 ∖ 𝑏 ) ) = 𝑏 ) |
50 |
41 46 49
|
rspcedvd |
⊢ ( ( 𝐵 ∈ V ∧ 𝑏 ⊆ 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
51 |
16 38 50
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
52 |
51
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑏 ∈ 𝒫 𝐵 ) → ∃ 𝑡 ∈ 𝒫 𝐵 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
53 |
|
simp12 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑠 ∈ 𝒫 𝐵 ) |
54 |
53
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑠 ⊆ 𝐵 ) |
55 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑡 ∈ 𝒫 𝐵 ) |
56 |
55
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑡 ⊆ 𝐵 ) |
57 |
|
sscon34b |
⊢ ( ( 𝑠 ⊆ 𝐵 ∧ 𝑡 ⊆ 𝐵 ) → ( 𝑠 ⊆ 𝑡 ↔ ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) ) ) |
58 |
54 56 57
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝑠 ⊆ 𝑡 ↔ ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) ) ) |
59 |
58
|
bicomd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) ↔ 𝑠 ⊆ 𝑡 ) ) |
60 |
|
simp11 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝜑 ) |
61 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
62 |
60 61
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
63 |
|
elmapi |
⊢ ( 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
64 |
62 63
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐼 : 𝒫 𝐵 ⟶ 𝒫 𝐵 ) |
65 |
60 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐵 ∈ V ) |
66 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ 𝑡 ) ⊆ 𝐵 ) |
67 |
65 66
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ 𝑡 ) ∈ 𝒫 𝐵 ) |
68 |
64 67
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ∈ 𝒫 𝐵 ) |
69 |
68
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ 𝐵 ) |
70 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ 𝑠 ) ⊆ 𝐵 ) |
71 |
65 70
|
sselpwd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐵 ∖ 𝑠 ) ∈ 𝒫 𝐵 ) |
72 |
64 71
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ∈ 𝒫 𝐵 ) |
73 |
72
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) |
74 |
|
sscon34b |
⊢ ( ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ 𝐵 ∧ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ⊆ 𝐵 ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
75 |
69 73 74
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
76 |
59 75
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ↔ ( 𝑠 ⊆ 𝑡 → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
77 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑏 = ( 𝐵 ∖ 𝑡 ) ) |
78 |
|
simp13 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝑎 = ( 𝐵 ∖ 𝑠 ) ) |
79 |
77 78
|
sseq12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝑏 ⊆ 𝑎 ↔ ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) ) ) |
80 |
77
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ 𝑏 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) |
81 |
78
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐼 ‘ 𝑎 ) = ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) |
82 |
80 81
|
sseq12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ↔ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
83 |
79 82
|
imbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ( ( 𝐵 ∖ 𝑡 ) ⊆ ( 𝐵 ∖ 𝑠 ) → ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ⊆ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) ) |
84 |
1 2 3
|
ntrclsfv1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
85 |
60 84
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
86 |
85
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐾 ‘ 𝑠 ) ) |
87 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐼 ) = ( 𝐷 ‘ 𝐼 ) |
88 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) |
89 |
1 2 65 62 87 53 88
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
90 |
86 89
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐾 ‘ 𝑠 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ) |
91 |
60 3
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → 𝐼 𝐷 𝐾 ) |
92 |
1 2 91
|
ntrclsfv1 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
93 |
92
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐾 ‘ 𝑡 ) ) |
94 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) |
95 |
1 2 65 62 87 55 94
|
dssmapfv3d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐷 ‘ 𝐼 ) ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
96 |
93 95
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( 𝐾 ‘ 𝑡 ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) |
97 |
90 96
|
sseq12d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ↔ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) |
98 |
97
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ↔ ( 𝑠 ⊆ 𝑡 → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑠 ) ) ) ⊆ ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ 𝑡 ) ) ) ) ) ) |
99 |
76 83 98
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑏 = ( 𝐵 ∖ 𝑡 ) ) → ( ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |
100 |
37 52 99
|
ralxfrd2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐵 ∧ 𝑎 = ( 𝐵 ∖ 𝑠 ) ) → ( ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |
101 |
19 33 100
|
ralxfrd2 |
⊢ ( 𝜑 → ( ∀ 𝑎 ∈ 𝒫 𝐵 ∀ 𝑏 ∈ 𝒫 𝐵 ( 𝑏 ⊆ 𝑎 → ( 𝐼 ‘ 𝑏 ) ⊆ ( 𝐼 ‘ 𝑎 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |
102 |
14 101
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐼 ‘ 𝑠 ) ⊆ ( 𝐼 ‘ 𝑡 ) ) ↔ ∀ 𝑠 ∈ 𝒫 𝐵 ∀ 𝑡 ∈ 𝒫 𝐵 ( 𝑠 ⊆ 𝑡 → ( 𝐾 ‘ 𝑠 ) ⊆ ( 𝐾 ‘ 𝑡 ) ) ) ) |