| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ntrcls.o |
⊢ 𝑂 = ( 𝑖 ∈ V ↦ ( 𝑘 ∈ ( 𝒫 𝑖 ↑m 𝒫 𝑖 ) ↦ ( 𝑗 ∈ 𝒫 𝑖 ↦ ( 𝑖 ∖ ( 𝑘 ‘ ( 𝑖 ∖ 𝑗 ) ) ) ) ) ) |
| 2 |
|
ntrcls.d |
⊢ 𝐷 = ( 𝑂 ‘ 𝐵 ) |
| 3 |
|
ntrcls.r |
⊢ ( 𝜑 → 𝐼 𝐷 𝐾 ) |
| 4 |
1 2 3
|
ntrclsfv1 |
⊢ ( 𝜑 → ( 𝐷 ‘ 𝐼 ) = 𝐾 ) |
| 5 |
4
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) ‘ ∅ ) = ( 𝐾 ‘ ∅ ) ) |
| 6 |
2 3
|
ntrclsbex |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 7 |
1 2 3
|
ntrclsiex |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝒫 𝐵 ↑m 𝒫 𝐵 ) ) |
| 8 |
|
eqid |
⊢ ( 𝐷 ‘ 𝐼 ) = ( 𝐷 ‘ 𝐼 ) |
| 9 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐵 |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 𝐵 ) |
| 11 |
|
eqid |
⊢ ( ( 𝐷 ‘ 𝐼 ) ‘ ∅ ) = ( ( 𝐷 ‘ 𝐼 ) ‘ ∅ ) |
| 12 |
1 2 6 7 8 10 11
|
dssmapfv3d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ 𝐼 ) ‘ ∅ ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ∅ ) ) ) ) |
| 13 |
5 12
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐾 ‘ ∅ ) = ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ∅ ) ) ) ) |
| 14 |
|
dif0 |
⊢ ( 𝐵 ∖ ∅ ) = 𝐵 |
| 15 |
14
|
fveq2i |
⊢ ( 𝐼 ‘ ( 𝐵 ∖ ∅ ) ) = ( 𝐼 ‘ 𝐵 ) |
| 16 |
|
id |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( 𝐼 ‘ 𝐵 ) = 𝐵 ) |
| 17 |
15 16
|
eqtrid |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( 𝐼 ‘ ( 𝐵 ∖ ∅ ) ) = 𝐵 ) |
| 18 |
17
|
difeq2d |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ∅ ) ) ) = ( 𝐵 ∖ 𝐵 ) ) |
| 19 |
|
difid |
⊢ ( 𝐵 ∖ 𝐵 ) = ∅ |
| 20 |
18 19
|
eqtrdi |
⊢ ( ( 𝐼 ‘ 𝐵 ) = 𝐵 → ( 𝐵 ∖ ( 𝐼 ‘ ( 𝐵 ∖ ∅ ) ) ) = ∅ ) |
| 21 |
13 20
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( 𝐼 ‘ 𝐵 ) = 𝐵 ) → ( 𝐾 ‘ ∅ ) = ∅ ) |
| 22 |
|
pwidg |
⊢ ( 𝐵 ∈ V → 𝐵 ∈ 𝒫 𝐵 ) |
| 23 |
6 22
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐵 ) |
| 24 |
1 2 3 23
|
ntrclsfv |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝐵 ) = ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝐵 ) ) ) ) |
| 25 |
19
|
fveq2i |
⊢ ( 𝐾 ‘ ( 𝐵 ∖ 𝐵 ) ) = ( 𝐾 ‘ ∅ ) |
| 26 |
|
id |
⊢ ( ( 𝐾 ‘ ∅ ) = ∅ → ( 𝐾 ‘ ∅ ) = ∅ ) |
| 27 |
25 26
|
eqtrid |
⊢ ( ( 𝐾 ‘ ∅ ) = ∅ → ( 𝐾 ‘ ( 𝐵 ∖ 𝐵 ) ) = ∅ ) |
| 28 |
27
|
difeq2d |
⊢ ( ( 𝐾 ‘ ∅ ) = ∅ → ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝐵 ) ) ) = ( 𝐵 ∖ ∅ ) ) |
| 29 |
28 14
|
eqtrdi |
⊢ ( ( 𝐾 ‘ ∅ ) = ∅ → ( 𝐵 ∖ ( 𝐾 ‘ ( 𝐵 ∖ 𝐵 ) ) ) = 𝐵 ) |
| 30 |
24 29
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ ∅ ) = ∅ ) → ( 𝐼 ‘ 𝐵 ) = 𝐵 ) |
| 31 |
21 30
|
impbida |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝐵 ) = 𝐵 ↔ ( 𝐾 ‘ ∅ ) = ∅ ) ) |