Metamath Proof Explorer


Theorem ntrclsneine0

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 21-May-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
Assertion ntrclsneine0 φ x B s 𝒫 B x I s x B s 𝒫 B ¬ x K s

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 3 adantr φ x B I D K
5 simpr φ x B x B
6 1 2 4 5 ntrclsneine0lem φ x B s 𝒫 B x I s s 𝒫 B ¬ x K s
7 6 ralbidva φ x B s 𝒫 B x I s x B s 𝒫 B ¬ x K s