Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ntrnei.o | |- O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | |
| ntrnei.f | |- F = ( ~P B O B ) | ||
| ntrnei.r | |- ( ph -> I F N ) | ||
| Assertion | ntrneineine0 | |- ( ph -> ( A. x e. B E. s e. ~P B x e. ( I ` s ) <-> A. x e. B ( N ` x ) =/= (/) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ntrnei.o |  |-  O = ( i e. _V , j e. _V |-> ( k e. ( ~P j ^m i ) |-> ( l e. j |-> { m e. i | l e. ( k ` m ) } ) ) ) | |
| 2 | ntrnei.f | |- F = ( ~P B O B ) | |
| 3 | ntrnei.r | |- ( ph -> I F N ) | |
| 4 | 3 | adantr | |- ( ( ph /\ x e. B ) -> I F N ) | 
| 5 | simpr | |- ( ( ph /\ x e. B ) -> x e. B ) | |
| 6 | 1 2 4 5 | ntrneineine0lem | |- ( ( ph /\ x e. B ) -> ( E. s e. ~P B x e. ( I ` s ) <-> ( N ` x ) =/= (/) ) ) | 
| 7 | 6 | ralbidva | |- ( ph -> ( A. x e. B E. s e. ~P B x e. ( I ` s ) <-> A. x e. B ( N ` x ) =/= (/) ) ) |