Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Richard Penner Exploring Topology via Seifert and Threlfall Generic Pseudoclosure Spaces, Pseudointerior Spaces, and Pseudoneighborhoods ntrneineine0  
				
		 
		
			
		 
		Description:   If (pseudo-)interior and (pseudo-)neighborhood functions are related
         by the operator, F  , then conditions equal to claiming that for
         every point, at least one (pseudo-)neighborbood exists hold equally.
         (Contributed by RP , 29-May-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						ntrnei.o ⊢  𝑂   =  ( 𝑖   ∈  V ,  𝑗   ∈  V  ↦  ( 𝑘   ∈  ( 𝒫  𝑗   ↑m   𝑖  )  ↦  ( 𝑙   ∈  𝑗   ↦  { 𝑚   ∈  𝑖   ∣  𝑙   ∈  ( 𝑘  ‘ 𝑚  ) } ) ) )  
					
						ntrnei.f ⊢  𝐹   =  ( 𝒫  𝐵  𝑂  𝐵  )  
					
						ntrnei.r ⊢  ( 𝜑   →  𝐼  𝐹  𝑁  )  
				
					Assertion 
					ntrneineine0 ⊢   ( 𝜑   →  ( ∀ 𝑥   ∈  𝐵  ∃ 𝑠   ∈  𝒫  𝐵  𝑥   ∈  ( 𝐼  ‘ 𝑠  )  ↔  ∀ 𝑥   ∈  𝐵  ( 𝑁  ‘ 𝑥  )  ≠  ∅ ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							ntrnei.o ⊢  𝑂   =  ( 𝑖   ∈  V ,  𝑗   ∈  V  ↦  ( 𝑘   ∈  ( 𝒫  𝑗   ↑m   𝑖  )  ↦  ( 𝑙   ∈  𝑗   ↦  { 𝑚   ∈  𝑖   ∣  𝑙   ∈  ( 𝑘  ‘ 𝑚  ) } ) ) )  
						
							2 
								
							 
							ntrnei.f ⊢  𝐹   =  ( 𝒫  𝐵  𝑂  𝐵  )  
						
							3 
								
							 
							ntrnei.r ⊢  ( 𝜑   →  𝐼  𝐹  𝑁  )  
						
							4 
								3 
							 
							adantr ⊢  ( ( 𝜑   ∧  𝑥   ∈  𝐵  )  →  𝐼  𝐹  𝑁  )  
						
							5 
								
							 
							simpr ⊢  ( ( 𝜑   ∧  𝑥   ∈  𝐵  )  →  𝑥   ∈  𝐵  )  
						
							6 
								1  2  4  5 
							 
							ntrneineine0lem ⊢  ( ( 𝜑   ∧  𝑥   ∈  𝐵  )  →  ( ∃ 𝑠   ∈  𝒫  𝐵  𝑥   ∈  ( 𝐼  ‘ 𝑠  )  ↔  ( 𝑁  ‘ 𝑥  )  ≠  ∅ ) )  
						
							7 
								6 
							 
							ralbidva ⊢  ( 𝜑   →  ( ∀ 𝑥   ∈  𝐵  ∃ 𝑠   ∈  𝒫  𝐵  𝑥   ∈  ( 𝐼  ‘ 𝑠  )  ↔  ∀ 𝑥   ∈  𝐵  ( 𝑁  ‘ 𝑥  )  ≠  ∅ ) )