Metamath Proof Explorer


Theorem ntrneineine0

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that for every point, at least one (pseudo-)neighborbood exists hold equally. (Contributed by RP, 29-May-2021)

Ref Expression
Hypotheses ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
ntrnei.f F = 𝒫 B O B
ntrnei.r φ I F N
Assertion ntrneineine0 φ x B s 𝒫 B x I s x B N x

Proof

Step Hyp Ref Expression
1 ntrnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 ntrnei.f F = 𝒫 B O B
3 ntrnei.r φ I F N
4 3 adantr φ x B I F N
5 simpr φ x B x B
6 1 2 4 5 ntrneineine0lem φ x B s 𝒫 B x I s N x
7 6 ralbidva φ x B s 𝒫 B x I s x B N x